Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2011_21_2_a11, author = {Walas, K. and Belter, D.}, title = {Supporting locomotive functions of a six-legged walking robot}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {363--377}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a11/} }
TY - JOUR AU - Walas, K. AU - Belter, D. TI - Supporting locomotive functions of a six-legged walking robot JO - International Journal of Applied Mathematics and Computer Science PY - 2011 SP - 363 EP - 377 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a11/ LA - en ID - IJAMCS_2011_21_2_a11 ER -
%0 Journal Article %A Walas, K. %A Belter, D. %T Supporting locomotive functions of a six-legged walking robot %J International Journal of Applied Mathematics and Computer Science %D 2011 %P 363-377 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a11/ %G en %F IJAMCS_2011_21_2_a11
Walas, K.; Belter, D. Supporting locomotive functions of a six-legged walking robot. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 2, pp. 363-377. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a11/
[1] Annunziato, M. and Pizzuti, S. (2000). Adaptive parameterization of evolutionary algorithms driven by reproduction and competition, Proceedings of ESIT 2000, Aachen, Germany,Vol. 1, pp. 31-35.
[2] Bai, S. and Low, K. H. (2001). Terrain evaluation and its application to path planning for walking machines, Advanced Robotics 15(1): 729-748.
[3] Bai, S., Low, K. H. and Zielińska, T. (1999). A new free gait generation for quadrupeds based on primary/secondary gait, Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI, USA, pp. 1371-1376.
[4] Barghava, S. and Waldron, K. (1988). Stability analysis of the walking beam vehicle, Proceedings of the International Advanced Robotics Conference, Pisa, Italy, pp. 114-119.
[5] Belter, D. (2009). Adaptive foothold selection for a hexapod robot walking on rough terrain, 7th Workshop on Advanced Control and Diagnosis, Zielona Góra, Poland, (onCDROM).
[6] Belter, D., Kasiński, A. and Skrzypczyński, P. (2008). Evolving feasible gaits for a hexapod robot by reducing the space of possible solutions, Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Nice, France, pp. 2673-2678.
[7] Belter, D. and Skrzypczyński, P. (2009). Efficient gait learning in simulation: Crossing the reality gap by evolutionary model identification, in O. Tosun, H. L. Akin, M. O. Tokhi and G. S.Virk (Eds.), Mobile Robotics: Solutions and Challenges, World Scientific, Singapore, pp. 861-868.
[8] Belter, D., Walas, K. and Kasiński, A. (2008). Distributed control system of DC servomotors for six legged walking robot, Proceedings of the International Power Electronics and Motion Control Conference, EPE-PEMC 2008, Poznań, Poland, pp. 1044-1049.
[9] Bretl, T. and Lall, S. (2006). A fast and adaptive test of static equilibrium for legged robots, Proceedings of the International Robotics and Automation Conference, Orlando, FL, USA, pp. 1109-1116.
[10] Bretl, T. and Lall, S. (2008). Testing static equilibrium for legged robots, IEEE Transactions on Robotics 24(4): 794-807, DOI: 10.1109/TRO.2008.2001360.
[11] Burnhamn, K. and Anderson, D. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretical Approach, Springer-Verlag, New York, NY.
[12] Dahlquist, G. and Bjorck, A. (1974). Numerical Methods, Prentice Hall, Englewood Cliffs, NJ.
[13] Gassmann, B., Frommberger, L., Dillmann, R. and Berns, K. (2003). Real-time 3d map building for local navigation of a walking robot in unstructured terrain, Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Las Vegas, NV, USA, pp. 2185-2190.
[14] Gonzalez, P., Estremera, J., Garcia, E. and Armada, M. (2005). Force distribution in closed kinematic chains, Autonomous Robots 18(1): 43-57, DOI: 10.1023/B:AURO.0000047288.23401.5c.
[15] Gutmann, J.-S., Fukuchi, M. and Fujita, M. (2004). Stairc-limbing control of humanoid robot using force and accelerometer sensors, Proceedings of the International Intelligent Robots and Systems Conference, Sendai, Japan, pp. 1407-1413.
[16] Kalakrishnan, M., Buchli, J., Pastor, P. and Schaal, S. (2009). Learning locomotion over rough terrain using terrain templates, Proceedings of the IEEE International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, pp. 167-172.
[17] Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization, Proceedings of the IEEE International Conference on Neural Networks, Piscataway, Australia, pp. 1942-1948.
[18] Kolmogorov, A. (1957). On the representation of continous function of several variables by superpositions of continous functions of one variable and addition, Doklady Akademii Nauk SSSR 114(4): 953-956.
[19] Kolter, J., Rodgers, M. and Ng, A. (2008). A control architecture for quadruped locomotion over rough terrain, Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, pp. 811-818.
[20] Kolter, J., Youngjun, K. and Ng, A. (2009). Stereo vision and terrain modeling for quadruped robots, Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 1557-1564.
[21] Kosiński, W. and Weigl, M. (1998). General mapping approximation problems solving by neural networks and fuzzy inference systems, Systems Analysis Modelling Simulation 30(1): 11-28.
[22] Kumar, V. and Waldron, K. (1988). Force distribution in closed kinematic chains, Proceedings of the International Robotics and Automation Conference, Philadelphia, PA, USA, pp. 114-119.
[23] Łabecki, P., Łopatowski, A. and Skrzypczyński, P. (2009). Terrain perception for a walking robot with a low-cost structured light sensor, Proceedings of the 4th European Conference on Moblie Robots, Dubrovnik, Croatia, pp. 199-204.
[24] Li, T.-H., Su, Y.-T., Kuo, C.-H., Chen, C.-Y., Hsu, C.-L. and Lu, M.-F. (2007). Stair-climbing control of humanoid robot using force and accelerometer sensors, Proceedings of the SICE Annual Conference, Takamatsu, Japan, pp. 2115-2120.
[25] Lobo, M., Vandenberghe, L., S.Boyd and Lebret, H. (1998). Applications of second-order cone programming, Linear Algebra and Its Applications 284(1-3): 193-228, DOI: 10.1016/S0024-3795(98)10032-0.
[26] Lorentz, G. (1986). Approximation of Functions, American Mathematical Society, New York, NY.
[27] Rebula, J., Neuhaus, P., Bonnlander, B., Johnson, M. and Pratt, J. (2007). A controller for the littledog quadruped walking on rough terrain, Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 1467-1473.
[28] Roennau, A., Kerscher, T., Ziegenmeyer, M., Zoellner, J. and Dillmann, R. (2009). Six-legged walking in rough terrain based on foot point planning, in O. Tosun, H. L. Akin, M. O. Tokhi and G. S. Virk (Eds.) Mobile Robotics: Solutions and Challenges, World Scientific, Singapore, pp. 591-698.
[29] Schmucker, U., Schneider, A. and Rusin, V. (2003). Interactive Virtual Simulator (IVS) of six-legged robot Katharina, Proceedings of the IEEE International Conference on Climbing and Walking Robots, Catania, Italy, pp. 327-332.
[30] Smith, R. (2007). Open dynamics engine, www.ode.org.
[31] Vernaza, P., Likhachev, M., Bhattacharya, S., Chitta, S. and Kushleyev, A. Lee, D. (2009). Search-based planning for a legged robot over rough terrain, Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 2380-2387.
[32] Walas, K. (2009). Static equilibrium condition for a multi-leg, stairs climbing walking robot, in K.R. Kozlowski (Ed.), Robot Motion and Control 2009, Lecture Notes in Control and Information Sciences, Vol. 396, Springer-Verlag, Berlin/Heidelberg, pp. 197-206, DOI: 10.1007/978-1-84882-985-5.
[33] Walas, K., Belter, D. and Kasiński, A. (2008). Control and environment sensing system for a six-legged robot, Journal of Automation, Mobile Robotics Intelligent Systems 2(3): 26-31.
[34] Zhou, D., Low, K. and Zielińska, T. (2000). An efficient foot-force distribution algorithm for quadruped walking robots, Robotica 18(4): 403-413.