Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2011_21_2_a10, author = {Clempner, J. B. and Poznyak, A. S.}, title = {Convergence method, properties and computational complexity for {Lyapunov} games}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {349--361}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a10/} }
TY - JOUR AU - Clempner, J. B. AU - Poznyak, A. S. TI - Convergence method, properties and computational complexity for Lyapunov games JO - International Journal of Applied Mathematics and Computer Science PY - 2011 SP - 349 EP - 361 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a10/ LA - en ID - IJAMCS_2011_21_2_a10 ER -
%0 Journal Article %A Clempner, J. B. %A Poznyak, A. S. %T Convergence method, properties and computational complexity for Lyapunov games %J International Journal of Applied Mathematics and Computer Science %D 2011 %P 349-361 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a10/ %G en %F IJAMCS_2011_21_2_a10
Clempner, J. B.; Poznyak, A. S. Convergence method, properties and computational complexity for Lyapunov games. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 2, pp. 349-361. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a10/
[1] Axelrod, R. (1984). The Evolution of Cooperation, Basic Books, New York, NY.
[2] Bernheim, B. D. (1984). Rationalizable strategic behavior, Econometrica 52(4): 1007-1028.
[3] Chen, X. and Deng, X. (2006). Setting the complexity of 2-player Nash equilibrium, Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006, Berkeley, CA, USA, pp. 261-270.
[4] Chen, X., Deng, X. and Tengand, S.-H. (2006). Computing Nash equilibria: Approximation and smoothed complexity, Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006, Berkeley, CA, USA, pp. 603-612.
[5] Clempner, J. (2006). Modeling shortest path games with Petri nets: A Lyapunov based theory, International Journal of Applied Mathematics and Computer Science 16(3): 387-397.
[6] Daskalakis, C., Goldberg, P. and Papadimitriou, C. (2006a). The complexity of computing a Nash equilibrium, Proceedings of the 38th ACM Symposium on Theory of Computing, STOC 2006, Seattle, WA, USA, pp. 71-78.
[7] Daskalakis, C., Mehta, A. and Papadimitriou, C. (2006b). A note on approximate Nash equilibria, Proceedings of the 2nd Workshop on Internet and Network Economics, WINE 06, Patras, Greece, pp. 297-306.
[8] Fabrikant, A. and Papadimitriou, C. (2008). The complexity of game dynamics: BGP oscillations, sink equilibria, and beyond, Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco, CA, USA, pp. 844-853.
[9] Fabrikant, A., Papadimitriou, C. and Talwar, K. (2004). The complexity of pure Nash equilibria, Proceedings of the 36th ACM Symposium on Theory of Computing, STOC 2006, Chicago, IL, USA, pp. 604-612.
[10] Goemans, M., Mirrokni, V. and Vetta, A. (2005). Sink equilibria and convergence, Proceedings of the 46th IEEE Symposium on Foundations of Computer Science, FOCS 2008, Pittsburgh, PA, USA, pp. 142-154.
[11] Griffin, T. G. and Shepherd F. B. and Wilfong, G. W. (2002). The stable paths problem and interdomain routing, IEEE/ACM Transactions on Networking 10(2): 232-243.
[12] Kakutani, S. (1941). A generalization of Brouwer's fixed point theorem, Duke Journal of Mathematics 8(3): 457-459.
[13] Kontogiannis, S., Panagopoulou, P. and Spirakis, P. (2006). Polynomial algorithms for approximating nash equilibria of bimatrix games, Proceedings of the 2ndWorkshop on Internet and Network Economics, WINE 06, Patras, Greece, pp. 286-296.
[14] Lakshmikantham, V., Matrosov, V. and Sivasundaram, S. (1991). Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer Academic Publication, Dordrecht.
[15] Lipton, R. J., Markakis, E. and Mehta, A. (2003). Playing large games using simple strategies, Proceedings of the 4th ACM Conference on Electronic Commerce, EC 2003, San Diego, CA, USA, pp. 36-41.
[16] Mirrokni, V. and Vetta, A. (2004). Convergence issues in competitive games, Proceedings of the 7th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2004, Cambridge, MA, USA, pp. 183-194.
[17] Moulin, H. (1984). Dominance solvability and Cournot stability, Mathematical Social Sciences 7(1): 83-102.
[18] Myerson, R. B. (1978). Refinements of the Nash equilibrium concept, International Journal of Game Theory 7(2): 73-80.
[19] Nash, J. (1951). Non-cooperative games, Annals of Mathematics 54(2): 287-295.
[20] Nash, J. (1996). Essays on Game Theory, Elgar, Cheltenham.
[21] Nash, J. (2002). The Essential John Nash, H. W. Kuhn and S. Nasar, Princeton, NJ.
[22] Pearce, D. (1984). Rationalizable strategic behavior and the problem of perfection, Econometrica 52(4): 1029-1050.
[23] Poznyak, A.S. (2008). Advance Mathematical Tools for Automatic Control Engineers, Vol. 1: Deterministic Techniques, Elsevier, Amsterdam.
[24] Poznyak, A. S., Najim, K. and Gomez-Ramirez, E. (2000). Self-Learning Control of Finite Markov Chains,Marcel Dekker, New York, NY.
[25] Selten, R. (1975). Reexamination of the perfectness concept for equilibrium points in extensive games, International Journal of Game Theory 4(1): 25-55.
[26] Tarapata, Z. (2007). Selected multicriteria shortest path problems: An analysis of complexity, models and adaptation of standard algorithms, International Journal of Applied Mathematics and Computer Science 17(2): 269-287, DOI: 10.2478/v10006-007-0023-2.
[27] Topkis, D. (1979). Equilibrium points in nonzero-sum n-persons submodular games, SIAM Journal of Control and Optimization 17(6): 773-787.
[28] Toth, B. and Kreinovich, V. (2009). Verified methods for computing Pareto sets: General algorithmic analysis, International Journal of Applied Mathematics and Computer Science 19(3): 369-380, DOI: 10.2478/v10006/009-0031-5.