Data intensive scientific analysis with grid computing
International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 2, pp. 219-228.

Voir la notice de l'article provenant de la source Library of Science

At the end of September 2009, a new Italian GPS receiver for radio occultation was launched from the Satish Dhawan Space Center (Sriharikota, India) on the Indian Remote Sensing OCEANSAT-2 satellite. The Italian Space Agency has established a set of Italian universities and research centers to implement the overall processing radio occultation chain. After a brief description of the adopted algorithms, which can be used to characterize the temperature, pressure and humidity, the contribution will focus on a method for automatic processing these data, based on the use of a distributed architecture. This paper aims at being a possible application of grid computing for scientific research.
Keywords: grid computing, GPS radio occultation, scheduler, agent, e-science
Mots-clés : przetwarzanie siatkowe, program szeregujący, e-nauka
@article{IJAMCS_2011_21_2_a0,
     author = {Terzo, O. and Mossucca, L. and Cucca, M. and Notarpietro, R.},
     title = {Data intensive scientific analysis with grid computing},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {219--228},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a0/}
}
TY  - JOUR
AU  - Terzo, O.
AU  - Mossucca, L.
AU  - Cucca, M.
AU  - Notarpietro, R.
TI  - Data intensive scientific analysis with grid computing
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2011
SP  - 219
EP  - 228
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a0/
LA  - en
ID  - IJAMCS_2011_21_2_a0
ER  - 
%0 Journal Article
%A Terzo, O.
%A Mossucca, L.
%A Cucca, M.
%A Notarpietro, R.
%T Data intensive scientific analysis with grid computing
%J International Journal of Applied Mathematics and Computer Science
%D 2011
%P 219-228
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a0/
%G en
%F IJAMCS_2011_21_2_a0
Terzo, O.; Mossucca, L.; Cucca, M.; Notarpietro, R. Data intensive scientific analysis with grid computing. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 2, pp. 219-228. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_2_a0/

[1] ASI (2010). Italian Space Agency, http://www.asi.it/.

[2] Berman, F., Fox, G. and Hey A. (2003). Grid Computing Making the Global Infrastructure a Reality, Wiley, Chichester, pp. 117-170.

[3] Buyya, R., Abramson, D. and Giddy, J. (2000). NIMROD/G: An architeture of a resource management and scheduling system in a global computational grid, High Performance Computing Asia 2000, Beijing, China, pp. 283-289.

[4] Dimitriadou, S. and Karatza, H. (2010). Job scheduling in a distributed system using backfilling with inaccurate runtime computation, International Conference on Complex, Intelligent and Software Intensive System, Washington, DC, USA, pp. 329-336.

[5] Foster, I. and Kesselman C. (2003). The Grid 2: Blueprint for a New Computing Infrastructure, Morgan Kaufmann, San Francisco, CA, pp. 38-63.

[6] Globus (2010a). The globus alliance, http://www.globus.org/.

[7] Globus (2010b). The globus consortium, http://www.globusconsortium.org/.

[8] Gradwell, P. (2002). Grid scheduling with agents, Proceedings of the Second International Joint Conference on Autonomous Agents Multi-Agent Systems (AAMAS 2003), Melbourne, Australia, pp. 229-245.

[9] ISRO (2010). Indian space research organization, http://www.isro.org/.

[10] Kurowski, K., Nabrzyski, J., A., Oleksiak, A. and Weglarz, J. (2006). Scheduling jobs on the grid multicriteria approach, Computational Methods in Science and Technology 12(2): 123-138.

[11] Kursinski, E. R., Hajj, G. A., Schofield J. T., Linfield R. P., and Hardy K. R. (1997). Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System, Journal of Geophysical Research 102(D19): 23.429-23.465.

[12] Leonid O., Rupak B., Hongzhang S. and Warren S. (2004). Job scheduling in a heterogeneous grid environment, Lawrence Berkeley National Laboratory, http://www.escholarship.org/uc/item/6659c4xj.

[13] Luntama, J. P., Kirchengast, G., Borsche, M., Foelsche, U., Steiner, A., Healy, S., von Engeln, A., O'Clerigh, E. and Marquardt, C. (2008). Prospects of the EPS GRAS mission for operational atmospheric applications, Bulletin of the American Meteorological Society 89(12): 1863.

[14] Melbourne, W. G., Davis, E. S., Duncan, C. B., Hajj, G. A., Hardy, K. R. , Kursinski, E. R., Meehan, T. K., Young, L. E. and Yunck T. P. (1994). The application of spaceborne GPS to atmospheric limb sounding and global change monitoring, JPL Publication, pp: 18-94.

[15] Wickert J., Schmidt T., Beyerle G., Knig R., Reigber C. and Jakowski N. (2004). The radio occultation experiment aboard CHAMP: Operational data analysis and validation of vertical atmospheric profiles, Journal of the Meteorological Society of Japan 82(1B): 381-395.