Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2011_21_1_a9, author = {Pedro, J. O. and Dahunsi, O. A.}, title = {Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {137--147}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a9/} }
TY - JOUR AU - Pedro, J. O. AU - Dahunsi, O. A. TI - Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system JO - International Journal of Applied Mathematics and Computer Science PY - 2011 SP - 137 EP - 147 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a9/ LA - en ID - IJAMCS_2011_21_1_a9 ER -
%0 Journal Article %A Pedro, J. O. %A Dahunsi, O. A. %T Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system %J International Journal of Applied Mathematics and Computer Science %D 2011 %P 137-147 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a9/ %G en %F IJAMCS_2011_21_1_a9
Pedro, J. O.; Dahunsi, O. A. Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 1, pp. 137-147. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a9/
[1] Al-Holou, N., Lahdhiri, T., Joo, D. S., Weaver, J. and Al-Abbas, F. (2002). Sliding mode neural network inference fuzzy logic control for active suspension system, IEEE Transactions on Fuzzy Systems 10(2): 234-245.
[2] Biglarbegian, M., Melek, W. and Golnaraghi, F. (2008). A novel neuro-fuzzy controller to enhance the performance of vehicle semi-active suspension systems, Vehicle System Dynamics 46(8): 691-711.
[3] Boukezzoula, R., Galichet, S. and Foulloy, L. (2007). Fuzzy feedback linearizing controller and its equivalence with fuzzy nonlinear internal model control structure, International Journal of Applied Mathematics and Computer Science 17(2): 233-248, DOI: 10.2478/v10006-007-0021-4.
[4] Boutalis, Y. S. (2004). Neural network approaches for feedback linearization, Journal of Control Engineering and Applied Informatics 6(1): 15-26.
[5] Buckner, G.D., Schuetze, K.T. and Beno, J.H. (2001). Intelligent feedback linearization for active vehicle suspension control, Journal of Dynamic Systems, Measurement and Control: Transactions of ASME 123(4): 727-733.
[6] Cao, J., Liu, H., Li, P. and Brown, D. (2008). State of the art in vehicle active suspension adaptive control systems based on intelligent methodologies, IEEE Transactions of Intelligent Transportation Systems 9(3): 392-405.
[7] Chantranuwathana, S. and Peng, H. (2004). Adaptive robust force control for vehicle active suspension, International Journal of Adaptive Control and Signal Processing 18(2): 83-102.
[8] Christophe, L., Swevers, J. and Sas, P. (2005). Robust linear control of an active suspension on a quarter car test-rig, Control Engineering Practice 13(5): 577-586.
[9] Dahunsi, O. A., Pedro, J. O. and Nyandoro, O. T. (2009). Neural network-based model predictive control of a servo-hydraulic ehicle suspension system, Proceedings of 009 IEEE AFRICON, Nairobi, Kenya, pp. 1-6, DOI: 0.1109/AFRCON.2009.5308111.
[10] Dahunsi, O. A., Pedro J. O. and Nyandoro, O. T. (2010a). Neural network-based PID control of a servo-hydraulic vehicle suspension system, Proceedings of the 7th South African Conference on Computational and Applied Mechanics (SACAM10), Pretoria, South Africa, pp. 1-6.
[11] Dahunsi, O. A., Pedro, J. O. and Nyandoro, O. T. (2010b). System identification and neural network based PID control of servo-hydraulic vehicle suspension system, SAIEE Africa Research Journal 101(3): 93-105.
[12] D'Amato, F. J. and Viassolo, D. E. (2000). Fuzzy control for active suspensions, Mechatronics 10(1): 897-920.
[13] Deng, J., Becerra, V. M. and Stobart, R. (2009). Input constraints handling in an MPC/feedback linearization scheme, International Journal of Applied Mathematics and Computer Science 19(2): 219-232, DOI: 10.2478/v10006-009-0018-2.
[14] Du, H. and Zhang, N. (2008). Multiobjective static output feedback control design for vehicle suspensions, Journal of System Design and Dynamics 2(1): 228-239.
[15] Du, H. and Zhang, N. (2009). Static output feedback control for electrohydraulic active suspensions via T-S fuzzy model approach, Journal of Dynamic Systems, Measurement and Control: Transactions of ASME 131(5): 051004-1-051004-11.
[16] Ehtiwesh, I. A. S. and Dorovic, Z. (2009). Comparative analysis of different control strategies for electro-hydraulic servo systems, Proceedings of the World Academy of Science, Engineering and Technology 56(6): 906-909.
[17] Eski, I. and Yildrim, S. (2009). Vibration control of vehicle active suspension system using a new robust neural network control system, Simulation Modelling Practice and Theory 17(5): 778-793.
[18] Fallah, M. S., Bhat, R. and Xie,W. (2009). H infinity robust control of active suspensions: A practical point of view, Proceedings of the 2009 American Control Conference, St Louis, MO, USA, pp. 1385-1390.
[19] Feng, J. Z., Li, J. and Yu, F. (2003). GA-based PID and fuzzy logic control for active vehicle suspension system, International Journal of Automotive Technology 4(4): 181-191.
[20] Fiahlo, I. and Balas, G.J. (2002). Road adaptive active suspension using linear parameter-varying gain-scheduling, IEEE Transactions on Control Systems Technology 10(1): 43-54.
[21] Gao, B., Tilley, D. G., Williams, R. A., Bean, A. and Donahue, J. (2006). Control of hydropneumatic active suspension based on a non-linear quarter-car model, Proceedings of the Institute of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 220(1): 75-31.
[22] Gao, Z. (2002). From linear to nonlinear control means: A practical progression, ISA Transactions 41(2): 177-189.
[23] Garces, F. R., Becerra, V.M., Kambhampti, C. and Warwick, K. (2003). Strategies for Feedback Linearisation: A Dynamic Neural Network Approach, Springer, London.
[24] Gaspar, P., Szaszi, I. and Bokor, J. (2003). Active suspension design using linear parameter varying control, International Journal of Autonomous Systems 1(2): 206-221.
[25] Goodwin, G. C., Rojas, O. and Takata, H. (2001). Nonlinear control via generalized feedback linearization using neural networks, Asian Journal of Control 3(2): 79-88.
[26] Hada, M. K., Menon A. and Bhave S. Y. (2007). Optimisation of an active suspension force controller using genetic algorithm for random input, Defence Science Journal 57(5): 691-706.
[27] Hagan, M. T. and Demuth, H.B. (1999). Neural networks for control, American Control Conference, San Diego, CA, USA, pp. 1642-1656.
[28] Hassanzadeh, I., Alizadeh, G., Shiirjoposht, N. P. and Hashemzadeh, F. (2010). A new optimal nonlinear approach to half car active suspension control, IACSIT International Journal of Engineering and Technology 2(1): 78-84.
[29] He, Y. and McPhee, J. (2005). A design methodology for mechatronic vehicles: Application of multidisciplinary optimization, multibody dynamics and genetic algorithms, Vehicle Systems Dynamics 43(10): 697-733.
[30] Hrovat, D. (1997). Survey of advanced suspension developments and related optimal control applications, Automatica 33(10): 1781-1817.
[31] Isidori, A. (1989). Nonlinear Control System, Springer-Verlag, Berlin.
[32] Jelali, M. and Kroll, A. (2003). Hydraulic Servo-Systems: Modelling, Identification and Control, Springer-Verlag, London.
[33] Jin, Y. and Yu, D. J. (2008). Adaptive neuron control using an integrated error approach with application to active suspensions, International Journal of Automotive Technology 9(3): 329-335.
[34] Kar, I. and Behera, L. (2009). Direct adaptive neural control for affine nonlinear systems, Applied Soft Computing 9(2): 756-764.
[35] Koshkouei, A. J. and Burnham, K. J. (2008). Sliding mode controllers for active suspensions, Proceedings of the 17th IFAC World Congress, COEX, Seoul, Korea, pp. 1-6.
[36] Kumar, M. S. (2008). Development of active suspension system for automobiles using PID controller, Proceedings of the World Congress on Engineering, WCE 2008, London, UK, pp. 1472-1477.
[37] Kumar, M. S. and Vijayarangan, S. (2007). Analytical and experimental studies on active suspension system of light passenger vehicle to improve ride comfort, Mechanika 65(3): 34-41.
[38] Kuo, Y. and Li, T. S. (1999). GA-based fuzzy PI/PD controller for automotive active suspension system, IEEE Transactions on Industrial Electronics 46(6): 88-100.
[39] Lufty, O. F., Noor, S. B.M., Marhaban, M. H. and Abbas, K. A. (2009). A geneticatlly trained adaptive neuro-fuzzy inference system network utilized as a PID-like feedback controller for non-linear systems, Proceedings of the Institute of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 223(3): 289-429.
[40] Nakkarat, P. and Kuntanapreeda, S. (2009). Observer-based backstepping force control of an electrohydraulic actuator, Control Engineering Practice 17(8): 895-902.
[41] Norgaard, M., Ravn, O., Poulsen, N. K. and Hansen, L. K. (2003). Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner's Handbook, Springer, Boston, MA.
[42] O'Dwyer, A. (2006). Handbook of PI and PID Controller Tuning Rules, Imperial College Press, London.
[43] Pedro, J. O. (2003). Design and performance of an active vehicle suspension system, Proceedings of the 2nd International Conference on Applied Mechanics and Materials, ICAMM 2003, Durban, South Africa, pp. 203-209.
[44] Pedro, J. O. (2007). H2-LQG/LTR controller design for active suspension systems, R and D Journal of the South African Institution of Mechanical Engineering 23(2): 32-41.
[45] Pedro, J. O. and Mgwenya, T. R. (2004). LQR control of a full - car active suspension with actuator dynamics, Proceedings of the 4th South African Conference on Applied Mechanics, SACAM'04, Johannesburg, South Africa, pp. 1-9.
[46] Poursamad, A. (2009). Adaptive feedback linearization control of antilock braking system using neural networks, Mechatronics 19(5): 767-773.
[47] Poussot-Vassal, C., Sename, O., Dugard, L., Gaspar, P., Szabo, Z. and Bokor, J. (2006). Multi-objective qLPV H infinity/H2 control of a half vehicle, Proceedings of the 10th MINI Conference on Vehicle System Dynamics, Identification and Anomalies, Budapest, Hungary, pp. 1-6.
[48] Ryu, S., Kim, Y. and Park, Y. (2008). Robust H infinity preview control of an active suspension system with norm-bounded uncertainties, International Journal of Automotive Technology 9(5): 585-592.
[49] Salem, A. A. A. and Aly, A. A. (2009). Fuzzy control of a quarter-car suspension systems, Proceedings of the World Academy of Science, Engineering and Technology (53): 258-263.
[50] Seo, J., Venugopal, R. and Kenne, J. (2007). Feedback linearization based control of a rotational hydraulic drive, Control Engineering Practice 15(12): 1495-1507.
[51] Sharkawy, A. B. (2005). Fuzzy and adaptive fuzzy control for the automobiles' active suspension system, Vehicle Systems Dynamics 43(10): 795-806.
[52] Shen, X. and Peng, H. (2003). Analysis of active suspension systems with hydraulic actuators, Proceedings of the 2003 IAVSD Conference, Atsuigi, Japan, pp. 1-10.
[53] Shi, J., Li, X. W. and Zhang, J. W. (2010). Feedback linearization and sliding mode control for active hydropneumatic suspension of a special-purpose vehicle, Proceedings of the Institute of Mechanical Engineers, Part D: Journal of Automobile Engineering 211(3): 171-181.
[54] Shirahatt, A., Prasad, P. S. S., Panzade, P. and Kulkarni, M. M. (2008). Optimal design of passenger car suspension for ride and road holding, Journal of the Brazillian Society of Mechanical Science and Engineering 30(1): 66-76.
[55] He, S., Reif, K. and Unbehauen, R. (1998). A neural approach for control of nonlinear systems with feedback linearization, Control Engineering Practice 9(6): 1409-1421.
[56] Slotine, J. J. and Li, W. (1991). Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, NJ.
[57] Yagiz, N., Sakman, L. E. and Guclu, R. (2008). Different control applications on a vehicle using fuzzy logic control, Sadhana 33(1): 15-25.
[58] Yesildirek, A. and Lewis, F. L. (1995). Feedback linearization using neural networks, Automatica 31(11): 1659-1664.
[59] Yoshimura, T. and Teramura, I. (2005). Active suspension control of a one-wheel car model using single input rule modules fuzzy reasoning and a disturbance observer, Journal of Zhejiang University: Science 6A(4): 251-256.