Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2011_21_1_a6, author = {Xu, C. and Liao, M. and He, X.}, title = {Stability and {Hopf} bifurcation analysis for a {Lotka-Volterra} predator-prey model with two delays}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {97--107}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a6/} }
TY - JOUR AU - Xu, C. AU - Liao, M. AU - He, X. TI - Stability and Hopf bifurcation analysis for a Lotka-Volterra predator-prey model with two delays JO - International Journal of Applied Mathematics and Computer Science PY - 2011 SP - 97 EP - 107 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a6/ LA - en ID - IJAMCS_2011_21_1_a6 ER -
%0 Journal Article %A Xu, C. %A Liao, M. %A He, X. %T Stability and Hopf bifurcation analysis for a Lotka-Volterra predator-prey model with two delays %J International Journal of Applied Mathematics and Computer Science %D 2011 %P 97-107 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a6/ %G en %F IJAMCS_2011_21_1_a6
Xu, C.; Liao, M.; He, X. Stability and Hopf bifurcation analysis for a Lotka-Volterra predator-prey model with two delays. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 1, pp. 97-107. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a6/
[1] Bhattacharyya, R. and Mukhopadhyay, B. (2006). Spatial dynamics of nonlinear prey-predator models with prey migration and predator switching, Ecological Complexity 3(2): 160-169.
[2] Faria, T. (2001). Stability and bifurcation for a delayed predator- prey model and the effect of diffusion, Journal of Mathematical Analysis and Applications 254(2): 433-463.
[3] Gao, S. J., Chen, L. S. and Teng, Z. D. (2008). Hopf bifurcation and global stability for a delayed predator-prey system with stage structure for predator, Applied Mathematics and Computation 202(2): 721-729.
[4] Hassard, B., Kazarino, D. and Wan, Y. (1981). Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge.
[5] Kar, T. and Pahari, U. (2007). Modelling and analysis of a preypredator system stage-structure and harvesting, Nonlinear Analysis: Real World Applications 8(2): 601-609.
[6] Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer, Dordrecht.
[7] Kuang, Y. (1993). Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, MA.
[8] Kuang, Y. and Takeuchi, Y. (1994). Predator-prey dynamics in models of prey dispersal in two-patch environments, Mathematical Biosciences 120(1): 77-98.
[9] Li, K. and Wei, J. (2009). Stability and Hopf bifurcation analysis of a prey-predator system with two delays, Chaos, Solitons Fractals 42(5): 2603-2613.
[10] May, R. M. (1973). Time delay versus stability in population models with two and three trophic levels, Ecology 4(2): 315-325.
[11] Prajneshu Holgate, P. (1987). A prey-predator model with switching effect, Journal of Theoretical Biology 125(1): 61-66.
[12] Ruan, S. and Wei, J. (2003). On the zero of some transcendential functions with applications to stability of delay differential equations with two delays, Dynamics of Continuous, Discrete and Impulsive Systems Series A 10(1): 863-874.
[13] Song, Y. L. and Wei, J. (2005). Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, Journal of Mathematical Analysis and Applications 301(1): 1-21.
[14] Teramoto, E. I., Kawasaki, K. and Shigesada, N. (1979). Switching effects of predaption on competitive prey species, Journal of Theoretical Biology 79(3): 303-315.
[15] Xu, R., Chaplain, M. A. J. and Davidson F. A. (2004). Periodic solutions for a delayed predator-prey model of prey dispersal in two-patch environments, Nonlinear Analysis: Real World Applications 5(1): 183-206.
[16] Xu, R. and Ma, Z. E. (2008). Stability and Hopf bifurcation in a ratio-dependent predator-prey system with stage structure, Chaos, Solitons Fractals 38(3): 669-684.
[17] Yan, X. P. and Li,W. T. (2006). Hopf bifurcation and global periodic solutions in a delayed predator-prey system, Applied Mathematics and Computation 177(1): 427-445.
[18] Yan, X. P. and Zhang, C. H. (2008). Hopf bifurcation in a delayed Lotka-Volterra predator-prey system, Nonlinear Analysis: Real World Applications 9(1): 114-127.
[19] Zhou, X. Y., Shi, X. Y. and Song, X. Y. (2008). Analysis of nonautonomous predator-prey model with nonlinear diffusion and time delay, Applied Mathematics and Computation 196(1): 129-136.