Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2011_21_1_a10, author = {Korus, {\L}.}, title = {Simple environment for developing methods of controlling chaos in spatially distributed systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {149--159}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a10/} }
TY - JOUR AU - Korus, Ł. TI - Simple environment for developing methods of controlling chaos in spatially distributed systems JO - International Journal of Applied Mathematics and Computer Science PY - 2011 SP - 149 EP - 159 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a10/ LA - en ID - IJAMCS_2011_21_1_a10 ER -
%0 Journal Article %A Korus, Ł. %T Simple environment for developing methods of controlling chaos in spatially distributed systems %J International Journal of Applied Mathematics and Computer Science %D 2011 %P 149-159 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a10/ %G en %F IJAMCS_2011_21_1_a10
Korus, Ł. Simple environment for developing methods of controlling chaos in spatially distributed systems. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) no. 1, pp. 149-159. http://geodesic.mathdoc.fr/item/IJAMCS_2011_21_1_a10/
[1] Alsing, P. M., Gavrielides, A. and Kovanis, V. (1994). Using neural networks for controling chaos, Physical Review E 49(2): 1225-1231.
[2] Andrievskii, B. R. and Fradkov, A. L. (2003). Control of chaos: Methods and applications, Automation and Remote Control 64(5): 673-713.
[3] Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P. and Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, Physical Review E 64(1): 1-8.
[4] Argoul, F., Arneodo, A., Richetti, P. and Roux, J. C. (1987). From quasiperiodicity to chaos in the Belousov-Zhabotinskii reaction, I: Experiment, Journal of Chemical Physics 86(6): 3325-3339.
[5] Astakhov, V. V., Anishchenko, V. S. and Shabunin, A. V. (1995). Controlling spatiotemporal chaos in a chain of the coupled logostic maps, IEEE Transactions on Circuits and Systems 42(6): 352-357.
[6] Auerbach, D. (1994). Controlling extended systems of chaotic elements, Physical Review Letters 72(8): 1184-1187.
[7] Banerjee, S., Misra, A. P., Shukla, P. K. and Rondoni, L. (2010). Spatiotemporal chaos and the dynamics of coupled langmuir and ion-acoustic waves in plasmas, Physical Review E 81(1): 1-10.
[8] Beck, O., Amann, A., Scholl, E., Socolar, J. E. S. and Just, W. (2002). Comparison of time-delay feedback schemes for spatiotemporal control of chaos in a reaction-diffusion system with global coupling, Physical Review E 66(1): 1-6.
[9] Boukabou, A. and Mansouri, N. (2005). Predictive control of higher dimensional chaos, Nonlinear Phenomena in Complex Systems 8(3): 258-265.
[10] Chen, G. and Dong, X. (1993). On feedback control of chaotic continuous-time systems, IEEE Transactions on Circuits and Systems 40(9): 591-601.
[11] Chopard, B., Dupuis, A.,Masselot, A. and Luthi, P. (2002). Cellular automata and lattice Boltzmann techniques: An approach to model and simulate complex systems, Advances in Complex Systems 5(2): 103-246.
[12] Chui, S. T. and Ma, K. B. (1982). Nature of some ch 26 aotic states for Duffing's equation, Physical Review A (4): 2262-2265.
[13] Córdoba, A., Lemos, M. C. and Jiménez-Morales, F. (2006). Periodical forcing for the control of chaos in a chemical reaction, Journal of Chemical Physics 124(1): 1-6.
[14] Crutchfield, J.P. and Kaneko, K. (1987). Directions in Chaos. Phenomenology of Spatio-Temporal Chaos, World Scientific Publishing Co., Singapore.
[15] Dressler, U. and Nitsche, G. (1992). Controlling chaos using time delay coordinates, Physical Review Letters 68(1): 1-4.
[16] Gautama, T., Mandic, D. P. and Hulle, M. M. V. (2003). Indications of nonlinear structures in brain electrical activity, Physical Review E 67(1): 1-5.
[17] Govindan, R. B., Narayanan, K. and Gopinathan, M. S. (1998). On the evidence of deterministic chaos in ECG: Surrogate and predictability analysis, Chaos 8(2): 495-502.
[18] Greilich, A. and Markus, M. (2003). Correlation of entropy with optimal pinning density for the control of spatiotemporal chaos, Nonlinear Phenomena in Complex Systems 6(1): 541-546.
[19] Gunaratne, G. H., Lisnay, P. S. and Vinson, M. J. (1989). Chaos beyond onset: A comparison of theory and experiment, Physical Review Letters 63(1): 1-4.
[20] Held, G. A., Jeffries, C. and Haller, E. E. (1984). Observation of chaotic behavior in an electron-hole plasma in GE, Physical Review Letters 52(12): 1037-1040.
[21] Jacewicz, P. (2002). Model Analysis and Synthesis of Complex Physical Systems Using Cellular Automata, Ph.D. thesis, University of Zielona Góra, Zielona Góra.
[22] Kaneko, K. (1990). Simulating Physics with Coupled Map Lattices, World Scientific Publishing Co., Singapore.
[23] Korus, L. (2007). Alternative methods of wave motion modelling, in B. Apolloni, R.J. Howlett and L. Jain (Eds.) Knowledge-Based Intelligent Information and Engineering Systems: KES2007/WIRN2007, Part 1, Lecture Notes in Artificial Intelligence, Vol. 4692, Springer-Verlag, Berlin/Heidelberg, pp. 335-345.
[24] Kwon, Y. S., Ham, S. W. and Lee, K. K. (1997). Analysis of minimal pinning density for controlling spatiotemporal chaos of a coupled map lattice, Physical Review E 55(2): 2009-2012.
[25] Langenberg, J., Pfister, G. and Abshagen, J. (2004). Chaos from Hopf bifurcation in a fluid flow experiment, Physical Review E 70(4): 046209.
[26] Mihaliuk, E., Sakurai, T., Chirila, F. and Showalter, K. (2002). Feedback stabilization of unstable propagating waves, Physical Review E 65(6): 065602.
[27] Ott, E. (2002). Chaos in Dynamical Systems, Cambridge University Press, Cambridge.
[28] Ott, E., Grebogi, C. and Yorke, J. A. (1990). Controlling chaos, Physical Review Letters 64(11): 1196-1199.
[29] Parekh, N., Parthasarathy, S. and Sinha, S. (1998). Global and local control of spatiotemporal chaos in coupled map lattice, Physical Review Letters 81(7): 1401-1404.
[30] Parmananda, P. (1997). Controlling turbulence in coupled map lattice systems using feedback techniques, Physical Review E 56(1): 239-244.
[31] Procaccia, I. and Meron, E. (1986). Low-dimensional chaos in surface waves: Theoretical analysis of an experiment, Physical Review A 34(4): 3221-3237.
[32] Pyragas, K. (2001). Control of chaos via an unstable delayed feedback controller, Physical Review Letters 86(11): 2265-2268.
[33] Singer, J., Wang, Y. and Haim, H. B. (1991). Controlling a chaotic system, Physical Review Letters 66(9): 1123-1125.
[34] Used, J. and Martin, J.C. (2010). Multiple topological structures of chaotic attractors ruling the emission of a driven laser, Physical Review E 82(1): 016218.
[35] Wei, W., Zonghua, L. and Bambi, H. (2000). Phase order in chaotic maps and in coupled map lattices, Physical Review Letters 84(12): 2610-2613.
[36] Weimar, J. R. (1997). Simulation with Cellular Automata, Logos Verlang Berlin, Berlin.
[37] Yamada, T. and Graham, R. (1980). Chaos in a laser system under a modulated external field, Physical Review Letters 45(16): 1322-1324.
[38] Yim, G., Ryu, J., Park, Y., Rim, S., Lee, S., Kye, W. and Kim, C. (2004). Chaotic behaviors of operational amplifiers, Physical Review E 69(4): 045201.
[39] Zhu, K. and Chen, T. (2001). Controlling spatiotemporal chaos in coupled map lattice, Physical Review E 63(3): 067201.