Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2010_20_4_a9, author = {Chang, Y. F. and Lee, J. C. and Mohd Rijal, O. and Syed Abu Bakar, S. A. R.}, title = {Efficient online handwritten {Chinese} character recognition system using a two-dimensional functional relationship model}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {727--738}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a9/} }
TY - JOUR AU - Chang, Y. F. AU - Lee, J. C. AU - Mohd Rijal, O. AU - Syed Abu Bakar, S. A. R. TI - Efficient online handwritten Chinese character recognition system using a two-dimensional functional relationship model JO - International Journal of Applied Mathematics and Computer Science PY - 2010 SP - 727 EP - 738 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a9/ LA - en ID - IJAMCS_2010_20_4_a9 ER -
%0 Journal Article %A Chang, Y. F. %A Lee, J. C. %A Mohd Rijal, O. %A Syed Abu Bakar, S. A. R. %T Efficient online handwritten Chinese character recognition system using a two-dimensional functional relationship model %J International Journal of Applied Mathematics and Computer Science %D 2010 %P 727-738 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a9/ %G en %F IJAMCS_2010_20_4_a9
Chang, Y. F.; Lee, J. C.; Mohd Rijal, O.; Syed Abu Bakar, S. A. R. Efficient online handwritten Chinese character recognition system using a two-dimensional functional relationship model. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 4, pp. 727-738. http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a9/
[1] Battaglia, G.J. (1996). Mean square error, AMP Journal of Technology 5(1): 31-36.
[2] Casey, R.G. (1970). Moment normalization of handprinted character, IBM Journal of Research and Development 14(5): 548-557.
[3] Chang, Y.F., Rijal, O.M. and Abu Bakar, S.A.R. (2010). Multidimensional unreplicated linear functional relationship model with single slope and its coefficient of determination, WSEAS Transactions on Mathematics 9(5): 295-C313.
[4] Dan, J. (2004). Modern Chinese Character Frequency List, http://lingua.mtsu.edu/chinesecomputing/statistics/char/list.php?Which=MO.
[5] Deepu, V., Sriganesh, M. and Ramakrishnan, A.G. (2004). Principal component analysis for online handwritten character recognition, Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, Vol. 2, pp. 327-330.
[6] Dong, J.X., Krzyżak, A. and Suen, C.Y. (2005). An improved handwritten Chinese character recognition system using support vector machine, Pattern Recognition Letters 26(12): 1849-1856.
[7] Fujarewicz, K. and Wiench, M. (2003). Selecting differentially expressed genes for colon tumor classification, International Journal of AppliedMathematics and Computer Science 13(3): 327-335.
[8] Gao, T.F. and Liu, C.L. (2008). High accuracy handwritten Chinese character recognition using LDA-based compound distances, Pattern Recognition 41(11): 3442-3451.
[9] Gao, X., Jin, L.W., Yin, J.X. and Huang, J.C. (2002). SVMbased handwritten Chinese character recognition, Chinese Journal of Electronics 30(5): 651-654.
[10] Gonzalez, R.C. and Woods, R.E. (1993). Digital Image Processing, Addison-Wesley Publishing Co., New York, NJ, pp. 580-583.
[11] Horiuchi, T., Haruki, R., Yamada, H. and Yamamoto, K. (1997). Two-dimensional extension of nonlinear normalization method using line density for character recognition, Proceedings of the 4th International Conference on Document Analysis and Recognition, Ulm, Germany, pp. 511-514.
[12] Huang, L. and Huang, X. (2001). Multiresolution recognition of offline handwritten Chinese characters with wavelet transform, Proceedings of the 6th International Conference on Document Analysis and Recognition, Washington, DC, USA, pp. 631-634.
[13] Kato, N., Suzuki, M., Omachi, S.I., Aso, H. and Nemoto, Y. (1999). A handwritten character recognition system using directional element feature and asymmetric Mahalanobis distance, IEEE Transactions on Pattern Analysis and Machine Intelligence 21(3): 258-262.
[14] Kawamura, A., Yura, K., Hayama, T., Hidai, Y., Minamikawa, T., Tanaka, A. and Masuda, S. (1992). On-line recognition of freely handwritten Japanese characters using directional feature densities, Proceedings of the 11th International Conference on Pattern Recognition, The Hague, the Netherlands, Vol. 2, pp. 183-186.
[15] Kimura, F., Takashina, K., Tsuruoka, S. and Miyake, Y. (1987). Modified quadratic discriminant functions and its application to Chinese character recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence 9(1): 149-153.
[16] Kimura, F., Wakabayashi, T., Tsuruoka, S. and Mayake, Y. (1997). Improvement of handwritten Japanese character recognition using weighted direction code histogram, Pattern Recognition 30(8): 1329-1337.
[17] Liu, C.L. and Marukawa, K. (2004). Global shape normalization for handwritten Chinese character recognition: A new method, Proceedings of the 9th International Workshop on Frontiers of Handwriting Recognition, Tokyo, Japan, pp. 300-305.
[18] Liu, C.L. and Marukawa, K. (2005). Pseudo two-dimensional shape normalization methods for handwritten Chinese character recognition, Pattern Recognition 38(12): 2242-2255.
[19] Liu, C.L., Jaeger, S. and Nakagawa, M. (2004). Online recognition of Chinese characters: The-state-of-the art, IEEE Transactions on Pattern Analysis and Machine Intelligence 26(2): 198-213.
[20] Liu, C.L., Mine, R. and Koga, M. (2005). Building compact classifier for large character set recognition using discriminative feature extraction, Proceedings of the 8th ICDAR, Seoul, Korea, pp. 846-850.
[21] Liu, C.L., Sako, H. and Fujisawa, H. (2003). Handwritten Chinese character recognition: Alternatives to nonlinear normalization, Proceedings of the 7th International Conference on Document Analysis and Recognition, Edinburgh, UK, pp. 524-528.
[22] Liu, H. and Ding, X. (2005). Handwritten character recognition using gradient feature and quadratic classifiers with multiple discrimination schemes, Proceedings of the 8th ICDAR, Seoul, Korea, pp. 19-23.
[23] Liu, J.Z., Cham, W.K. and Chang, M.M.Y. (1996). Online Chinese character recognition using attributed relational graph matching, IEE Proceedings: Vision, Image, Signal Processing 143(2): 125-131.
[24] Long, T. and Jin, L.W. (2008). Building compact MQDF classifier for large character set recognition by subspace distribution sharing, Pattern Recognition 41(9): 2916-2925.
[25] Michalak, K. and Kwa´snicka, H. (2006). Correlation-based feature selection strategy in classification problems, International Journal of Applied Mathematics and Computer Science 16(4): 503-511.
[26] Miquelez, T., Bengoetxea, E. and Larranaga, P. (2004). Evolutionary computation based on Bayesian classifiers, International Journal of Applied Mathematics and Computer Science 14(3): 335-349.
[27] Ritter, G.X. and Wilson, J.N. (2001). Handbook of Computer Vision Algorithms in Image Algebra, CRC Press LLC, Boca Raton, FL, pp. 225-228.
[28] Romero, R., Berger, R., Thibadeau, R. and Touretsky, D. (1995). Neural network classifiers for optical Chinese character recognition, Proceedings of the 4th Annual Symposium on Document Analysis and Information Retrieval, Las Vegas, NV, USA, pp. 385-398.
[29] Saeed, K. (2000). A projection approach for Arabic handwritten characters recognition, in P. Sincak and J. Vascak (Eds.), Quo Vadis Computational Intelligence? New Trends and Approaches in Computational Intelligence, Physica-Verlag, Berlin, pp. 106-111.
[30] Shimodaira, H., Sudo, T., Nakai, M. and Sagayama, S. (2003). On-line overlaid-handwriting recognition based on substroke HMMs, Proceedings of the 7th International Conference on Document Analysis and Recognition, Edinburgh, UK, Vol. 2, p. 1043.
[31] Shioyama, T., Wu, H.Y. and Nojima, T. (1998). Recognition algorithm based on wavelet transform for handprinted Chinese characters, Proceedings of the 14th International Conference on Pattern Recognition, Hong Kong, China, Vol. 1, pp. 229-232.
[32] Suzuki, M., Ohmachi, S., Kato, N., Aso, H. and Nemoto, Y. (1997). A discrimination method of similar characters using compound Mahalanobis function, IEICE Transactions on Information and Systems J80-D(10): 2752-2760.
[33] Świniarski, R.W. (2001). Rough sets methods in feature reduction and classification, International Journal of Applied Mathematics and Computer Science 11(3): 565-582.
[34] Takahashi, K., Yasuda, H. and Matsumoto, T. (1997). A fast HMM algorithm for on-line handwritten character recognition, Proceedings of the 4th International Conference on Document Analysis and Recognition, Ulm, Germany, pp. 369-375.
[35] Van der Weken, D., Nachtegael, M. and Kerre, E.E. (2002). Image quality evaluation, Proceedings of the 6th International Conference on Signal Processing, Beijing, China, Vol. 1, pp. 711-714.
[36] Wang, Z., Bovik, A.C., Sheikh, H.R. and Simoncelli, E.P. (2004). Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing 13(4): 600-612.
[37] Zheng, J., Ding, X. and Wu, Y. (1997). Recognizing online handwritten Chinese character via FARG matching, Proceedings of the 4th International Conference on Document Analysis and Recognition, Ulm, Germany, Vol. 2, pp. 621-624.