Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2010_20_4_a8, author = {Emambakhsh, M. and Ebrahimnezhad, H. and Sedaaghi, M. H.}, title = {Integrated region-based segmentation using color components and texture features with prior shape knowledge}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {711--726}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a8/} }
TY - JOUR AU - Emambakhsh, M. AU - Ebrahimnezhad, H. AU - Sedaaghi, M. H. TI - Integrated region-based segmentation using color components and texture features with prior shape knowledge JO - International Journal of Applied Mathematics and Computer Science PY - 2010 SP - 711 EP - 726 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a8/ LA - en ID - IJAMCS_2010_20_4_a8 ER -
%0 Journal Article %A Emambakhsh, M. %A Ebrahimnezhad, H. %A Sedaaghi, M. H. %T Integrated region-based segmentation using color components and texture features with prior shape knowledge %J International Journal of Applied Mathematics and Computer Science %D 2010 %P 711-726 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a8/ %G en %F IJAMCS_2010_20_4_a8
Emambakhsh, M.; Ebrahimnezhad, H.; Sedaaghi, M. H. Integrated region-based segmentation using color components and texture features with prior shape knowledge. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 4, pp. 711-726. http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a8/
[1] Andreopoulos, A. and Tsotsos, J.K. (2010). Cardiac MRI dataset, www.cse.yorku.ca/ mridataset/.
[2] Andrysiak, T. and Choras, M. (2005). Image retrieval based on hierarchical Gabor filters, International Journal of Applied Mathematics and Computer Science 15(4): 471-480.
[3] Biasdy, F., El-Sana, J. and Habash, N. (2006). Online arabic handwriting recognition using hidden Markov models, Proceedings of the 10th International Workshop on Frontiers in Handwriting Recognition, La Baule, France.
[4] Cheng, H., Jing, X.H., Sun, Y. And Wang, J. (2001). Color image segmentation: Advances and prospects, Pattern Recognition 34(12): 2259-2281.
[5] Cremers, S.D., Rousson, M. and Deriche, R. (2007). A review of statistical approaches to level sets segmentation: Integrating colour, texture, motion and shape, International Journal of Computer Vision 72(2): 195-215.
[6] Dokur, Z., Iscan, Z. and Olmez, T. (2006). Segmentation of medical images by using wavelet transform and incremental self-organizing map, in A. Gelbukh and C.A. Reyes-Garcia (Eds.) MICAI 2006: Advances ina Artificial Intelligence, Lecture Notes in Computer Science, Vol. 4293, Springer, Berlin/Heidelberg, pp. 800-809.
[7] Einsele, F., Ingold, R. and Hennebert, J. (2008). A languageindependent, open-vocabulary system based on hmms for recognition of ultra low resolution words, Journal of Universal Computer Science 14(18): 2982-2997.
[8] Emambakhsh, M., Ebrahimnezhad, H. and Sedaaghi, M.H. (2010). A hybrid top-down/bottom up approach for image segmentation incorporating color and texture with prior shape knowledge, 18th Iranian Conference on Electrical Engineering ICEE2010, Isfahan, Iran, pp. 270-275.
[9] Emambakhsh, M. and Sedaaghi, M.H. (2009). Automatic MRI brain segmentation using local features, self-organizing maps, and watershed, IEEE International Conference on Signal and Image Processing Applications, Kuala Lumpur, Malaysia, pp. 123-128.
[10] Feddern, C., Weickert, J. and Burgeth, B. (2006). Levelset methods for tensor-valued images, Proceedings of the IEEE 2nd Workshop on VLSM, Nice, France, pp. 65-72.
[11] Forsyth, D.A. and Ponce, J. (2002). Computer Vision: A modern Approach, Prentice-Hall of India, New Dehli.
[12] Gerig, G., Kbler, O., Kikinis, R. and Jolesz, F.A. (1992). Nonlinear anisotropic filtering of MRI data, IEEE Transactions on Medical Imaging 11(2): 221-232.
[13] Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA.
[14] Greig, D., Porteous, B. and Seheult, A. (1989). Exact maximum a posteriori estimation for binary images, Journal of the Royal Statistical Society. Series B (Methodological) 51(2): 271-279.
[15] Hao, J., Shen, Y. and Wang, Q. (2007). Segmentation for MRA image: An improved level-set approach, IEEE Transactions on Instrumentation and Measurement 56(4): 1316-1321.
[16] Hrebien, M., Stec, P., Nieczkowski, T. and Obuchowicz, A. (2008). Segmentation of breast cancer fine needle biopsy cytological images, International Journal of Applied Mathematics and Computer Science 18(2): 159-170, DOI: 10.2478/v10006-008-0015-x.
[17] Jain, A.K. (1989). Fundamentals of Digital Image Processing, Prentice Hall, Englewood Cliffs, NJ.
[18] Kass, M.,Witkin, A. and Terzopoulos, D. (1988). Snakes, active contour model, International Journal of Computer Vision 1(4): 321-331.
[19] Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983). Optimization by simulated annealing, Science Magazine 220(4598): 671-680.
[20] Kuo, W., Lin, C. and Sun, Y. (2008). Brain MR images segmentation using statistical ratio: Mapping between watershed and competitive Hopfield clustering network algorithms, Computer Methods and Programs in Biomedicine 91(3): 191-198.
[21] Lai, C. and Chang, C. (2009). A hierarchical evolutionary algorithm for automatic medical image segmentation, Expert Systems with Applications 36(1): 248-259.
[22] Levenberg, K. (1944). A method for the solution of certain problems in least-squares, Quarterly Applied Mathematics 2(2): 164-168.
[23] Lewis, Michael, R. and Torczon, V. (1999). Pattern search algorithms for bound constrained minimization, SIAM Journal on Optimization 9(4): 1082-1099.
[24] Lu, Y., Wang, J., Kong, J., Zhang, B. and Zhang, J. (2006). An integrated algorithm for MRI brain images segmentation, Computer Vision Approaches to Medical Image Analysis 4241: 132-142.
[25] Mitiche, A. and Sekkati, H. (2006). Optical flow 3d segmentation and interpretation: A variational method with active curve evolution and level sets, IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11): 1818-1829.
[26] Ong, S.H., Yeo, N.C., Lee, K.H., Venkatesh, Y.V. and Kao, D.H. (2002). Segmentation of color images using a twostage self-organizing network, Image and Vision Computing 20(4): 279-289.
[27] Osher, S. and Sethian, J. (1988). Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computationl Physics 79(1): 12-49.
[28] Perona, P. and Malik, J. (1990). Scale space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7): 629-639.
[29] Petera, Z., Boussone, V., Bergote, C. and Peyrina, F. (2008). Aconstrained region growing approach based on watershed for the segmentation of low contrast structures in bone micro-CT images, Pattern Recognition 41(7): 2358-2368.
[30] Raja, K. B., Madheswaran, M. and Thyagarajah, K. (2010). Texture pattern analysis of kidney tissues for disorder identification and classification using dominant Gabor wavelet, Machine Vision and Applications 21(3): 287-300.
[31] Ramme, A.J., DeVries, N., Kallemyn, N.A., Magnotta, V.A. and Grosland, N. M. (2009). Semi-automated phalanx bone segmentation using the expectation maximization algorithm, Journal of Digital Imaging 22(5): 483-491.
[32] Ranganathan, A. (2004). The Levenberg-Marquardt algorithm, Technical report http://www.scribd.com/doc/10093320/Levenberg-Marquardt-Algorithm.
[33] Rousson, M., Brox, T. and Deriche, R. (2003). Active unsupervised texture segmentation on a diffusion based feature space, Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, pp. 699-704.
[34] Roweis, S. (n.d.). Levenberg-Marquardt optimization, http: //www.cs.nyu.edu/roweis/notes/lm.pdf.
[35] Sandler, R. and Lindenbaum, M. (2006). Gabor filter analysis for texture segmentation, Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06), New York, NY, USA, p. 178.
[36] Skarbek, W. and Koschan, A. (1994). Color image segmentation-A survey, Technical report, University of Berlin, Berlin.
[37] Sagiv, C., Sochen, N.A., and Zeevi, Y.Y. (2006). Integrated active contours for texture segmentation, IEEE Transactions on Image Processing 16(6): 1633-1646.
[38] Susomboon, R., Raicu, D. and Furst, J. (2006). Automatic single-organ segmentation in computed tomography images, Sixth IEEE International Conference on Data Mining (ICDM'06), Hong Kong, China, pp. 1081-1086.
[39] The-ViewCVS-Group (2010). Caltech 101 dataset, http://grey.colorado.edu.
[40] Torczon, V. (1997). On the convergence of pattern search algorithms, SIAM Journal on Optimization 7(1): 1-25.
[41] Tsai, A., Yezzi, A., Wells, J.W., Tempany, C., Tucker, D., Fan, A., Grimson, W.E. and Willsky, A. (2003). A shapebased approach to the segmentation of medical imagery using level sets, IEEE Transactions on Medical Imaging 22(2): 137-154.
[42] Vincent, L. and Soille, P. (1991). Watersheds in digital spaces: An efficient algorithm based on immersion simulations, Pattern Analysis and Machine Intelligence 13(6): 583-598.
[43] Wang, J., Kong, J., Lu, Y., Qi, M. and Zhang, B. (2008). A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints, Computerized Medical Imaging and Graphics 32(8): 685-698.
[44] Wang, Z. and Vemuri, B.C. (2004). An affine invariant tensor dissimilarity measure and its applications to tensor-valued image segmentation, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, pp. 228-233.