Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2010_20_4_a7, author = {Han, S. E.}, title = {Ultra regular covering space and its automorphism group}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {699--710}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a7/} }
TY - JOUR AU - Han, S. E. TI - Ultra regular covering space and its automorphism group JO - International Journal of Applied Mathematics and Computer Science PY - 2010 SP - 699 EP - 710 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a7/ LA - en ID - IJAMCS_2010_20_4_a7 ER -
Han, S. E. Ultra regular covering space and its automorphism group. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 4, pp. 699-710. http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a7/
[1] Boxer, L. (1999). A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10(1): 51-62.
[2] Boxer, L. (2006). Digital products, wedge, and covering spaces, Journal of Mathematical Imaging and Vision 25(2): 159-171.
[3] Boxer, L. and Karaca, I. (2008). The classification of digital covering spaces, Journal of Mathematical Imaging and Vision 32(1): 23-29.
[4] Han, S.E. (2003). Computer topology and its applications, Honam Mathematical Journal 25(1): 153-162.
[5] Han, S.E. (2005a). Algorithm for discriminating digital images w.r.t. a digital (k0, k1)-homeomorphism, Journal of Applied Mathematics and Computing 18(1-2): 505-512.
[6] Han, S.E. (2005b). Digital coverings and their applications, Journal of Applied Mathematics and Computing 18(1-2): 487-495.
[7] Han, S.E. (2005c). Non-product property of the digital fundamental group, Information Sciences 171 (1-3): 73-91.
[8] Han, S.E. (2005d). On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal 27(1): 115-129.
[9] Han, S.E. (2006a). Connected sum of digital closed surfaces, Information Sciences 176(3): 332-348.
[10] Han, S.E. (2006b). Discrete Homotopy of a Closed k-Surface, Lecture Notes in Computer Science, Vol. 4040, Springer-Verlag, Berlin, pp. 214-225.
[11] Han, S.E. (2006c). Erratum to "Non-product property of the digital fundamental group", Information Sciences 176(1): 215-216.
[12] Han, S.E. (2006d). Minimal simple closed 18-surfaces and a topological preservation of 3D surfaces, Information Sciences 176(2): 120-134.
[13] Han, S.E. (2007a). Strong k-deformation retract and its applications, Journal of the Korean Mathematical Society 44(6): 1479-1503.
[14] Han, S.E. (2007b). The k-fundamental group of a closed ksurface, Information Sciences 177(18): 3731-3748.
[15] Han, S.E. (2008a). Comparison among digital fundamental groups and its applications, Information Sciences 178(8): 2091-2104.
[16] Han, S.E. (2008b). Equivalent (ko, k1)-covering and generalized digital lifting, Information Sciences 178(2): 550-561.
[17] Han, S.E. (2008c). Map preserving local properties of a digital image, Acta Applicandae Mathematicae 104(2): 177-190.
[18] Han, S.E. (2008d). The k-homotopic thinning and a torus-like digital image in Zn, Journal of Mathematical Imaging and Vision 31(1): 1-16.
[19] Han, S.E. (2009a). Cartesian product of the universal covering property, Acta Applicandae Mathematicae 108(2): 363-383.
[20] Han, S.E. (2009b). Regural covering space in digital covering theory and its applications, Honam Mathematical Journal 31(3): 279-292.
[21] Han, S.E. (2009c). Remark on a generalized universal covering space, Honam Mathematical Journal 31(3): 267-278.
[22] Han, S.E. (2010a). Existence problem of a generalized universal covering space, Acta Applicandae Mathematicae 109(3): 805-827.
[23] Han, S.E. (2010b). Multiplicative property of the digital fundamental group, Acta Applicandae Mathematicae 110(2): 921-944.
[24] Han, S.E. (2010c). KD-(ko, k1)-homotopy equivalence and its applications, Journal of the Korean Mathematical Society 47(5): 1031-1054.
[25] Han, S.E. (2010d). Properties of a digital covering space and discrete Deck's transformation group, The IMA Journal of Applied Mathematics, (submitted).
[26] Khalimsky, E. (1987). Motion, deformation, and homotopy in finite spaces, Proceedings of IEEE International Conferences on Systems, Man, and Cybernetics, pp. 227-234.
[27] Kim I.-S., and Han, S.E. (2008). Digital covering theory and its applications, Honam Mathematical Journal 30(4): 589-602.
[28] Kong, T.Y. and Rosenfeld, A. (1996). Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam.
[29] Malgouyres, R. and Lenoir, A. (2000). Topology preservation within digital surfaces, Graphical Models 62(2): 71-84.
[30] Massey,W.S. (1977). Algebraic Topology, Springer-Verlag, New York, NY.
[31] Rosenfeld, A. (1979). Digital topology, American Mathematical Monthly 86: 76-87.
[32] Rosenfeld, A. and Klette, R. (2003). Digital geometry, Information Sciences 148: 123-127.
[33] Spanier, E.H. (1966). Algebraic Topology, McGraw-Hill Inc., New York, NY.