Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2010_20_4_a11, author = {Barkalov, A. and Titarenko, L. and Bieganowski, J.}, title = {Reduction in the number of {LUT} elements for control units with code sharing}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {751--761}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a11/} }
TY - JOUR AU - Barkalov, A. AU - Titarenko, L. AU - Bieganowski, J. TI - Reduction in the number of LUT elements for control units with code sharing JO - International Journal of Applied Mathematics and Computer Science PY - 2010 SP - 751 EP - 761 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a11/ LA - en ID - IJAMCS_2010_20_4_a11 ER -
%0 Journal Article %A Barkalov, A. %A Titarenko, L. %A Bieganowski, J. %T Reduction in the number of LUT elements for control units with code sharing %J International Journal of Applied Mathematics and Computer Science %D 2010 %P 751-761 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a11/ %G en %F IJAMCS_2010_20_4_a11
Barkalov, A.; Titarenko, L.; Bieganowski, J. Reduction in the number of LUT elements for control units with code sharing. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 4, pp. 751-761. http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_4_a11/
[1] Adamski, M. and Barkalov, A. (2006). Architectural and Sequential Synthesis of Digital Devices, University of Zielona Góra Press, Zielona Góra.
[2] Altera (2010). Altera corpotation webpage, http://www.altera.com
[3] Baranov, S. (2008). Logic and System Design of Digital Systems, TUT Press, Tallinn.
[4] Barkalov, A. and Titarenko, L. (2008). Logic Synthesis for Compositonal Microprogram Control Units, Springer, Berlin.
[5] Barkalov, A., Titarenko, L. and Wiśniewski, R. (2006). Synthesis of compositional microprogram control units with sharing codes and address decoder, Proceedings of the International Conference on Mixed Design of Integrated Circuits and Systems, MIXDES 2006, Gdynia, Poland, pp. 397-400.
[6] Borowik, G., Falkowski, B. and Łuba, T. (2007). Cost-efficient synthesis for sequetnial circuits implemented using embedded memory blocks of FPGA's, Proceedings of the IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems, Cracow, Poland, pp. 99-104.
[7] Czerwiński, R. and Kania, D. (2004). State assignment method for high speed FSM, Proceedings of the IFAC Workshop on Programmable Devices and Systems, PDS, Cracow, Poland, pp. 216-221.
[8] Eastlake, D. and Jones, P. (2001). RFC:3174 US secure hash algorithm 1 (SHA1), Technical report, Network Working Group, http://www.faqs.org/rfcs/rfc3174.html.
[9] Escherman, B. (1993). State assignment for hardwired VLSI control units, ACM Computing Surveys 25(4): 415-436.
[10] Jarvinen, K., Tommiska, M. and Skytta, J. (2005). Hardware implementation analysis of the MD5 hash algorithm, HICSS'05: Proceedings of the 38th Annual Hawaii Interenational Conference on System Sciences, Waikoloa, Hi, USA, p. 298.1.
[11] Kam, T., Villa, T., Brayton, R. and Sangiovanni-Vincentelli, A. (1998). A Synthesis of Finie State Machines: Functional Optimization, Kluwer Academic Publishers, Boston, MA.
[12] Kania, D. (2004). Logic Synthesis for PAL-Based Complex Programmable Logic Devices, Scientific Fascicles of the Silesian University of Technology, Gliwice, (in Polish).
[13] Kołopieńczyk, M. (2008). Application of Address Converter for Decreasing Memory Size of Compositional Microprogram Control Unit with Code Sharing, University of Zielona Góra Press, Zielona Góra.
[14] Maxfield, C. (2004). The Design Warrior's Guide to FPGAs, Academic Press, Orlando, FL.
[15] Micheli, G.D. (1994). Synthesis and Optimization of Digital Circuits, McGraw-Hill, New York, NY.
[16] Navabi, Z. (2007). Embedded Core Design with FPGAs, McGraw-Hill, New York, NY.
[17] Rivest, R. (1992). RFC:1312 the MD5 message-digest algorithm, Technical report, Network Working Group, http://www.faqs.org/rfcs/rfc1312.html.
[18] Scholl, C. (2001). Functional Decomosition with Application of FPGA Synthesis, Kluwer Academic Publishers, Boston, MA.
[19] Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H., Stephan, P., Brayton, R.K. and Sangiovanni-Vincentelli, A.L. (1992). SIS: A system for sequential circuit synthesis, Technical Report UCB/ERL M92/41, EECS Department, University of California, Berkeley, CA.
[20] Solovjev, V.V. and Klimowicz, A. (2008). Logic Design for Digital Systems on the Base of Programmable Logic Integerated Circuits, Hot Line-Telecom, Moscow, (in Russian).
[21] Titarenko, L. and Bieganowski, J. (2009). Optimization of compositional microprogram control unit by modification of microinstruction format, Electronics and Telecommunication Quarterly 55(2): 201-214.
[22] Xilinx (2006). Xilinx Synthesis and Simulation Design Guide, Xilinx, http://www.xilinx.com/itp/xilinx9/books/docs/sim/sim.pdf.
[23] Xilinx (2010). Xilinx corpotation webpage, http://www.xilinx.com.
[24] Yang, S. (1991). Logic synthesis and optimization benchmarks user guide, Technical report, Microelectronic Center of North Carolina, Research Triangle Park, NC 27709-2889.