Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2010_20_3_a7, author = {\'Sliwi\'nski, P.}, title = {On-line wavelet estimation of {Hammerstein} system nonlinearity}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {513--523}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_3_a7/} }
TY - JOUR AU - Śliwiński, P. TI - On-line wavelet estimation of Hammerstein system nonlinearity JO - International Journal of Applied Mathematics and Computer Science PY - 2010 SP - 513 EP - 523 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_3_a7/ LA - en ID - IJAMCS_2010_20_3_a7 ER -
Śliwiński, P. On-line wavelet estimation of Hammerstein system nonlinearity. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 3, pp. 513-523. http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_3_a7/
[1] Billings, S.A. and Fakhouri, S.Y. (1978). Theory of separable processes with application to the identification of nonlinear systems, Proceedings of IEE 125(10): 1051-1058.
[2] Capobianco, E. (2002). Hammerstein system representation of financial volatility processes, The European Physical Journal B-Condensed Matter 27(2): 201-211.
[3] Chen, H.-F. (2004). Pathwise convergence of recursive identification algorithms for Hammerstein systems, IEEE Transactions on Automatic Control 49(10): 1641-1649.
[4] Chen, H.-F. (2005). Strong consistency of recursive identification for Hammerstein systems with discontinuous piecewise-linear memoryless block, IEEE Transactions on Automatic Control 50(10): 1612-1617.
[5] Chen, S., Billings, S.A. and Luo, W. (1989). Orthogonal least squares methods and their application to non-linear system identification, International Journal of Control 50(5): 1873-1896.
[6] Coca, D. and Billings, S. A. (2001). Non-linear system identification using wavelet multiresolution models, International Journal of Control 74(18): 1718-1736.
[7] Daubechies, I. (1992). Ten Lectures on Wavelets, SIAM, Philadelphia, PA.
[8] Donoho, D.L. (1993). Unconditional bases are optimal bases for data compression and for statistical estimation, Applied and Computational Harmonic Analysis 1(1): 100-115.
[9] Donoho, D.L., Vetterli, M., DeVore, R.A. and Daubechies, I. (1998). Data compression and harmonic analysis, IEEE Transactions on Infromation Theory 44(6): 2435-2476.
[10] Giannakis, G.B. and Serpedin, E. (2001). A bibliography on nonlinear system identification, Signal Processing 81(3): 533-580.
[11] Greblicki, W. (1989). Nonparametric orthogonal series identification of Hammerstein systems, International Journal of Systems Science 20(12): 2355-2367.
[12] Greblicki, W. (2001). Recursive identification of Wiener systems, International Journal of Applied Mathematics and Computer Science 11(4): 977-991.
[13] Greblicki, W. (2002). Stochastic approximation in nonparametric identification of Hammerstein systems, IEEE Transactions on Automatic Control 47(11): 1800-1810.
[14] Greblicki,W. and Pawlak,M. (1985). Fourier and Hermite series estimates of regression function, Annals of the Institute of Statistical Mathematics 37(3): 443-454.
[15] Greblicki, W. and Pawlak, M. (1986). Identification of discrete Hammerstein system using kernel regression estimates, IEEE Transactions on Automatic Control 31(1): 74-77.
[16] Greblicki, W. and Pawlak, M. (1989). Recursive nonparametric identification of Hammerstein systems, Journal of the Franklin Institute 326(4): 461-481.
[17] Greblicki, W. and Pawlak, M. (1994). Nonparametric recovering nonlinearities in block oriented systems with the help of Laguerre polynomials, Control-Theory and Advanced Technology 10(4): 771-791.
[18] Greblicki, W. and Pawlak, M. (2008). Nonparametric System Identification, Cambridge University Press, New York, NY.
[19] Györfi, L., Kohler, M., Krzy˙zak, A. and Walk, H. (2002). A Distribution-Free Theory of Nonparametric Regression, Springer-Verlag, New York, NY.
[20] Haber, R. and Keviczky, L. (1999). Nonlinear System Parameter Identification, Kluwer Academic Publishers, Dordrecht/Boston/London.
[21] Hasiewicz, Z., Pawlak, M. and Śliwiński, P. (2005). Nonparametric identification of non-linearities in blockoriented complex systems by orthogonal wavelets with compact support, IEEE Transactions on Circuits and Systems I: Regular Papers 52(1): 427-442.
[22] Hasiewicz, Z. and Śliwiński, P. (2002). Identification of nonlinear characteristics of a class of block-oriented non-linear systems via Daubechies wavelet-based models, International Journal of Systems Science 33(14): 1121-1144.
[23] Hsu, K., Poolla, K. and Vincent, T.L. (2008). Identification of structured nonlinear systems, IEEE Transactions on Automatic Control 53(11): 2497-2513.
[24] Jang, W. and Kim, G. (1994). Identification of loudspeaker nonlinearities using the NARMAX modelling technique, Journal of Audio Engineering Society 42(1/2): 50-59.
[25] Jyothi, S. N. and Chidambaram, M. (2000). Identification of Hammerstein model for bioreactors with input multiplicities, Bioprocess Engineering 23(4): 323-326.
[26] Kang, H.W., Cho, Y.S. and Youn, D. H. (1999). On compensating nonlinear distortions of an OFDM system using an efficient adaptive predistorter, IEEE Transactions on Communications 47(4): 522-526.
[27] Kukreja, S., Kearney, R. and Galiana, H. (2005). A least-squares parameter estimation algorithm for switched Hammerstein systems with applications to the VOR, IEEE Transactions on Biomedical Engineering 52(3): 431-444.
[28] Lang, Z.Q. (1997). A nonparametric polynomial identification algorithm for the Hammerstein system, IEEE Transactions on Automatic Control 42(2): 1435-1441.
[29] Lortie, M. and Kearney, R.E. (2001). Identification of time varying Hammerstein systems from ensemble data, Annals of Biomedical Engineering 29(2): 619-635.
[30] Mallat, S.G. (1998). A Wavelet Tour of Signal Processing, Academic Press, San Diego, CA.
[31] Marmarelis, V.Z. (2004). Nonlinear Dynamic Modeling of Physiological Systems, IEEE Press Series on Biomedical Engineering, Wiley IEEE Press, Piscataway, NJ.
[32] Mzyk, G. (2007). Generalized kernel regression estimate for Hammerstein system identification, International Journal of Applied Mathematics and Computer Science 17(2): 101-109, DOI: 10.2478/v10006-007-0018-z.
[33] Mzyk, G. (2009). Nonlinearity recovering in Hammerstein system from short measurement sequence, IEEE Signal Processing Letters 16(9): 762-765.
[34] Nešić, D. and Mareels, I. M.Y. (1998). Dead-beat control of simple Hammerstein models, IEEE Transactions on Automatic Control 43(8): 1184-1188.
[35] Niedźwiecki, M. (1988). Functional series modeling approach to identification of nonstationary stochastic systems, IEEE Transactions on Automatic Control 33(10): 955-961.
[36] Nordsjo, A. and Zetterberg, L. (2001). Identification of certain time-varying nonlinear Wiener and Hammerstein systems, IEEE Transactions on Signal Processing 49(3): 577-592.
[37] Pawlak, M. and Hasiewicz, Z. (1998). Nonlinear system identification by the Haar multiresolution analysis, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 45(9): 945-961.
[38] Rutkowski, L. (1980). Sequential estimates of probability densities by orthogonal series and their application in pattern classification, IEEE Transactions on System, Man, and Cybernetics 10(12): 918-920.
[39] Rutkowski, L. (1982). On-line identification of time-varying systems by nonparametric techniques, IEEE Transactions on Automatic Control 27(1): 228-230.
[40] Rutkowski, L. (2004). Generalized regression neural networks in time-varying environment, IEEE Transactions on Neural Networks 15(3): 576-596.
[41] Śliwiński, P. and Hasiewicz, Z. (2008). Computational algorithms for wavelet identification of nonlinearities in Hammerstein systems with random inputs, IEEE Transactions on Signal Processing 56(2): 846-851.
[42] Śliwiński, P. and Hasiewicz, Z. (2009). Recursive nonparametric estimation of Hammerstein system nonlinearity by Haar wavelet series, IEEE Transactions on Automatic Control, (submitted for review).
[43] Śliwiński, P., Hasiewicz, Z. and Wachel, P. (2007). On-line polynomial series estimates of Hammerstein system nonlinearities, Proceedings of the 13th IEEE IFAC International Conference on Methods and Models in Automation and Robotics MMAR 2007, Szczecin, Poland.
[44] Śliwiński, P., Rozenblit, J., Marcellin, M.W. and Klempous, R. (2009). Wavelet amendment of polynomial models in nonlinear system identification, IEEE Transactions on Automatic Control 54(4): 820-825.
[45] Srinivasan, R., Rengaswamy, R., Narasimhan, S. and Miller, R. (2005). Control loop performance assessment: 2. Hammerstein model approach for stiction diagnosis, Industrial Engineering Chemistry Research 44(17): 6719-6728.
[46] Stone, C.J. (1980). Optimal rates of convergence for nonparametric regression, Annals of Statistics 8(6): 1348-1360.
[47] Sureshbabu, N. and Farrell, J.A. (1999). Wavelet based system identification for non-linear control, IEEE Transactions on Automatic Control 44(2): 412-417.
[48] Unser, M. (1999). Splines. A perfect fit for signal and image processing, IEEE Signal Processing Magazine 16(6): 22-38.
[49] Vörös, J. (2005). Identification of Hammerstein systems with time-varying piecewise-linear characteristics, IEEE Transactions on Circuits and Systems II: Express Briefs 52(12): 865-869.
[50] Walter, G.G. and Shen, X. (2001). Wavelets and other orthogonal systems with applications, 2nd Edn., Chapman Hall, Boca Raton, FL.
[51] Westwick, D.T. and Kearney, R.E. (2001). Separable least squares identification of nonlinear Hammerstein models: Application to stretch reflex dynamics, Annals of Biomedical Engineering 29(8): 707-718.
[52] Westwick, D.T. and Kearney, R.E. (2003). Identification of nonlinear physiological systems, IEEE Press Series on Biomedical Engineering, Wiley/IEEE Press, Piscataway, NJ.
[53] Zhao,W.-X. and Chen, H.-F. (2006). Recursive identification for Hammerstein system with ARX subsystem, IEEE Transactions on Automatic Control 51(12): 1966-1974.