Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2010_20_3_a6, author = {Kaczorek, T.}, title = {Similarity transformation of matrices to one common canonical form and its applications to {2D} linear systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {507--512}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_3_a6/} }
TY - JOUR AU - Kaczorek, T. TI - Similarity transformation of matrices to one common canonical form and its applications to 2D linear systems JO - International Journal of Applied Mathematics and Computer Science PY - 2010 SP - 507 EP - 512 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_3_a6/ LA - en ID - IJAMCS_2010_20_3_a6 ER -
%0 Journal Article %A Kaczorek, T. %T Similarity transformation of matrices to one common canonical form and its applications to 2D linear systems %J International Journal of Applied Mathematics and Computer Science %D 2010 %P 507-512 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_3_a6/ %G en %F IJAMCS_2010_20_3_a6
Kaczorek, T. Similarity transformation of matrices to one common canonical form and its applications to 2D linear systems. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 3, pp. 507-512. http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_3_a6/
[1] Ansaklis, P.J. and Michel, N. (1997). Linear Systems, McGrow-Hill, New York, NY.
[2] Basile, G. and Marro, G. (1969). Controlled and conditioned invariant subspaces in linear system theory, Journal of Optimization Theory and Applications 3(5): 306-315.
[3] Basile, G. and Marro, G. (1982). Self-bounded controlled invariant subspaces: A straightforward approach to constrained controllability, Journal of Optimization Theory and Applications 38(1): 71-81.
[4] Conte, G. and Perdon, A. (1988). A geometric approach to the theory of 2-D systems, IEEE Transactions on Automatics Control AC-33(10): 946-950.
[5] Conte, G., Perdon, A. and Kaczorek, T. (1991). Geometric methods in the theory of singular 2D linear systems, Kybernetika 27(3): 262-270.
[6] Fornasini, E. and Marchesini, G. (1978). Doubly-indexed dynamical systems: State-space models and structural properties, Mathematical System Theory 12: 59-72.
[7] Kaczorek, T. (1992). Linear Control Systems, Vol. 2,Wiley, New York, NY.
[8] Kaczorek, T. (2001). Positive 1D and 2D Systems, Springer-Verlag, London.
[9] Kaczorek, T. (2007). Polynomial and Rational Matrices. Applications in Dynamical Systems Theory, Springer-Verlag, London.
[10] Kailath, T. (1980). Linear Systems, Prentice Hall, Englewood Cliffs, NJ.
[11] Karmanciolu, A. and Lewis, F.L. (1990). A geometric approach to 2-D implicit systems, Proceedings of the 29th Conference on Decision and Control, Honolulu, HI, USA.
[12] Karmanciolu, A. and Lewis, F.L. (1992). Geometric theory for the singular Roesser model, IEEE Transactions on Automatics Control AC-37(6): 801-806.
[13] Kurek, J. (1985). The general state-space model for a two dimensional linear digital systems, IEEE Transactions on Automatics Control AC-30(6): 600-602.
[14] Malabre, M., Martínez-García, J. and Del-Muro-Cuéllar, B. (1997). On the fixed poles for disturbance rejection, Automatica 33(6): 1209-1211.
[15] Ntogramatzis, L. (2010). A geometric theory for 2-D systems, Multidimensional Systems and Signal Processing, (submitted).
[16] Roesser, R.P. (1975). A discrete state-space model for linear image processing, IEEE Transactions on Automatic Control AC-20(1): 1-10.
[17] Wonham, W.M. (1979). Linear Multivariable Control: A Geometric Approach, Springer, New York, NY.
[18] Żak S. (2003). Systems and Control, Oxford University Press, New York, NY.