Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2010_20_3_a14, author = {Kouche, M. and Ainseba, B.}, title = {A mathematical model of {HIV-1} infection including the saturation effect of healthy cell proliferation}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {601--612}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_3_a14/} }
TY - JOUR AU - Kouche, M. AU - Ainseba, B. TI - A mathematical model of HIV-1 infection including the saturation effect of healthy cell proliferation JO - International Journal of Applied Mathematics and Computer Science PY - 2010 SP - 601 EP - 612 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_3_a14/ LA - en ID - IJAMCS_2010_20_3_a14 ER -
%0 Journal Article %A Kouche, M. %A Ainseba, B. %T A mathematical model of HIV-1 infection including the saturation effect of healthy cell proliferation %J International Journal of Applied Mathematics and Computer Science %D 2010 %P 601-612 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_3_a14/ %G en %F IJAMCS_2010_20_3_a14
Kouche, M.; Ainseba, B. A mathematical model of HIV-1 infection including the saturation effect of healthy cell proliferation. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 3, pp. 601-612. http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_3_a14/
[1] Callaway, D.S. and Perelson, A.S. (1998). HIV-1 infection and low steady state viral loads, Bulletin of Mathematical Biology 64(5): 29-64.
[2] Culshaw, R. and Ruan, S. (2000). A delay-differential equation model of hiv infection of CD4+ T-cells,Mathematical Biosciences 165(1): 27-39.
[3] Culshaw, R., Ruan, S. and Webb, G. (2003). A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, Journal of Mathematical Biology 46(5): 425-444.
[4] De Boer, R.J. and Perelson, A.S. (1995). Towards a general function describing T-cell proliferation, Journal of Theoretical Biology 175(4): 567-576.
[5] De Leenheer, P. and Smith, H.L. (2003). Virus dynamics: A global analysis, SIAM Journal of Applied Mathematics 63(4): 1313-1327.
[6] Diekmann, O., Heesterbeek, J.A.P. and Metz, J. (1990). On the definition and the computation of the basic reproduction ratio Ro in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology 29(4): 365-382.
[7] Dimitrov, D.S., Willey, R.L., Sato, H., Chang, L.J., Blumenthal, R. and Martin, M.A. (1993). Quantitation of human immunodeficiency virus type 1 infection kinetics, Journal of Virology 67(4): 2182-2190.
[8] Esteva-Peralta, L. and Velasco-Hernandez, J.X. (2002). M-matrices and local stability in epidemic models, Mathematical and Computer Modelling 36(4-5): 491-501.
[9] Grossman, Z., Feinberg, M.B. and Paul, W. (1998). Multiple modes of cellular activation and virus transmission in HIV infection: A role for chronically and latently infected cells in sustaining viral replication, Proceedings of the National Academy of Sciences of the United States of America 95(11): 6314-6319.
[10] Hassard, B.D., Kazarinoff, N.D. and Wan, Y.H. (1981). Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge.
[11] Herz, A. V.M., Bonhoeffer, S., Anderson, R.M., May, R.M. and Nowak, M. A. (1996). Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay, Proceedings of the National Academy of Sciences of the United States of America 93(14): 7247-7251.
[12] Kirschner, D. E. (1996). Using mathematics to understand HIV immune system, Notices of the American Mathematical Society 43(2): 191.
[13] Kirschner, D.E. and Webb, G. (1996). A model for treatment strategy in the chemotherapy of AIDS, Bulletin of Mathematical Biology 58(2): 167-190.
[14] MacDonald, N. (1978). Time Delays in Biological Models, Springer-Verlag, New York, NY.
[15] Mittler, J.E., Sulzer, B., Neumann, A.U. and Perelson, A.S. (1998). Influence of delayed viral production on viral dynamics in HIV-1 infected patients, Mathematical Biosciences 152(2): 143-163.
[16] Nelson, P.W., Murray, J.D. and Perelson, A.S. (2000). A model of HIV-1 pathogenesis that includes an intracellular delay, Mathematical Biosciences 163(2): 201-215.
[17] Nelson, P.W. and Perelson, A.S. (2002). Mathematical analysis of delay differential equation models of HIV-1 infection, Mathematical Biosciences 179(1): 73-94.
[18] Nowak, M.A. and Bangham, R.M. (1996). Population dynamics of immune responses to persistent viruses, Science 272(5258): 74-79.
[19] Nowak, M.A. and May, R.M. (2000). Virus Dynamics, Oxford University Press, New York, NY.
[20] Perelson, A.S. (1989). Modelling the interaction of the immune system with HIV, in C. Castillo-Chavez (Ed.), Mathematical and Statistical Approaches to AIDS Epidemiology, Springer-Verlag, New York, NY, pp. 350-370.
[21] Perelson, A.S., Kirschner, D.E. and Boer, R.D. (1993). Dynamics of HIV infection of CD4+ T-cells, Mathematical Biosciences 114(1): 81-125.
[22] Perelson, A.S. and Nelson, P.W. (1999). Mathematical analysis of HIV-1 dynamics in vivo, SIAM Review 41(1): 3-44.
[23] Philips, D. M. (1994). The role of cell-to-cell transmission in HIV infection, AIDS 8(6): 719-731.
[24] Smith, H.L. (1995). Monotone Dynamical Systems, American Mathematical Society, Providence, RI.
[25] Spouge, J.L., Shrager, R.I. and Dimitrov, D.S. (1996). HIV-1 infection kinetics in tissue cultures, Mathematical Biosciences 138(1): 1-22.
[26] Tam, J. (1999). Delay effect in a model for virus replication, IMA Journal of Mathematics Applied to Medicine and Biology 16(1): 29-37.
[27] Thieme, H.R. (1993). Persistence under relaxed point dissipativity (with application to an endemic model), SIAM Journal on Mathematical Analysis 24(2): 407.
[28] van den Driessche, P. and Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences 180(1-2): 29-48.
[29] Wang, L. and Li, M.Y. (2006). Mathematical analysis of the global dynamics of a model for HIV infection of CD4+T-cells, Mathematical Biosciences 200(1): 4-57.
[30] Zhu, H. and Smith, H.L. (1994). Stable periodic orbits for a class of three dimensional competitive systems, Journal of Differential Equations 110(1): 143-156.