Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2010_20_2_a8, author = {Saeed, K. and Tab\k{e}dzki, M. and Rybnik, M. and Adamski, M.}, title = {K3M: {A} universal algorithm for image skeletonization and a review of thinning techniques}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {317--335}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a8/} }
TY - JOUR AU - Saeed, K. AU - Tabędzki, M. AU - Rybnik, M. AU - Adamski, M. TI - K3M: A universal algorithm for image skeletonization and a review of thinning techniques JO - International Journal of Applied Mathematics and Computer Science PY - 2010 SP - 317 EP - 335 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a8/ LA - en ID - IJAMCS_2010_20_2_a8 ER -
%0 Journal Article %A Saeed, K. %A Tabędzki, M. %A Rybnik, M. %A Adamski, M. %T K3M: A universal algorithm for image skeletonization and a review of thinning techniques %J International Journal of Applied Mathematics and Computer Science %D 2010 %P 317-335 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a8/ %G en %F IJAMCS_2010_20_2_a8
Saeed, K.; Tabędzki, M.; Rybnik, M.; Adamski, M. K3M: A universal algorithm for image skeletonization and a review of thinning techniques. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 2, pp. 317-335. http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a8/
[1] Ahmed, M. and Ward, R. (2002). A rotation invariant rule based thinning algorithm for character recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence 24(12): 1672-1678.
[2] Altuwaijri, M.M. and Bayoumi, M.A. (1998). A thinning algorithm for arabic characters using art2 neural network, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 45(2): 260-264.
[3] Ammann, C.J. and Sartori-Angus, A.G. (1985). Fast thinning algorithm for binary images, Image Vision and Computing 3(2): 71-79.
[4] Andreadis, I., Vardavoulia, M., Louverdis, G. and Papamarkos, N. (2000). Colour image skeletonisation, Proceedings of the 10th European Signal Processing Conference, Tampere, Finland, Vol. 4, pp. 2389-2392.
[5] Arcelli, C. (1981). Pattern thinning by contour tracing, Computer Graphics Image Processing 17(2): 130-144.
[6] Arcelli, C. and di Baja, G.S. (1978). On the sequential approach to medial line transformation, IEEE Transactions on Systems, Man and Cybernetics 8(2): 139-144.
[7] Arcelli, C. and di Baja, G.S. (1981). A thinning algorithm based on prominence detection, Pattern Recognition 13(3): 225-235.
[8] Arcelli, C. and di Baja, G.S. (1987). A contour characterization for multiply connected figures, Pattern Recognition Letters 6(4): 245-249.
[9] Arcelli, C. and di Baja, G.S. (1989). A one-pass two-operation process to detect the skeletal pixels on the 4-distance transform, IEEE Transactions on Pattern Analysis and Machine Intelligence 11(4): 411-414.
[10] Baruch, O. (1988). Line thinning by line following, Pattern Recognition Letters 8(4): 271-276.
[11] Blum, H. (1967). A transformation for extracting new descriptors of shape, in W.W. Dunn (Ed.), Models for the Perception of Speech and Visual Form, MIT Press, Cambridge, MA, pp. 362-380.
[12] Chen, Y.-S. (1996). The use of hidden deletable pixel detection to obtain bias-reduced skeletons in parallel thinning, ICPR '96: Proceedings of the 13th International Conference on Pattern Recognition, Washington, DC, USA, pp. 91-95.
[13] Chen, Y.-S. and Hsu, W.-H. (1988). A modified fast parallel algorithm for thinning digital patterns, Pattern Recognition Letters 7(2): 99-106.
[14] Chen, Y.-S. and Hsu, W.-H. (1989a). A 1-subcycle parallel thinning algorithm for producing perfect 8-curves and obtaining isotropic skeleton of an l-shape pattern, Proceedings of the International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, pp. 208-215.
[15] Chen, Y.-S. and Hsu, W.-H. (1989b). A systematic approach for designing 2-subcycle and pseudo 1-subcycle parallel thinning algorithms, Pattern Recognition 22(3): 267-282.
[16] Chen, Y.-S. and Hsu, W.-H. (1990). A comparison of some one-pass parallel thinnings, Pattern Recognition Letters 11(1): 35-41.
[17] Chin, R.T., Wan, H.-K., Stover, D.L. and Iverson, R. D. (1987). A one-pass thinning algorithm and its parallel implementation, Computer Vision, Graphics, and Image Processing 40(1): 30-40.
[18] Dinnen, G. (1955). Programming pattern recognition, Proceedings of the Western Joint Computer Conference, Los Angeles, CA, USA, pp. 94-100.
[19] Dyer, C. and Rosenfeld, A. (1979). Thinning algorithms for gray-scale pictures, IEEE Transactions on Pattern Analysis and Machine Intelligence 1(1): 88-89.
[20] Favre, A. and Keller, H. (1983). Parallel syntactic thinning by recoding of binary pictures, Computer Vision, Graphics, and Image Processing 23(1): 99-112.
[21] Gonzalez, R.C. and Woods, R.E. (2007). Digital Image Processing, 3rd Edition, Prentice Hall, Upper Saddle River, NJ.
[22] Guo, Z. and Hall, R.W. (1989). Parallel thinning with two subiteration algorithms, Communications of the ACM 32(3): 359-373.
[23] Guo, Z. and Hall, R.W. (1992). Fast fully parallel thinning algorithms, CVGIP: Image Understanding 55(3): 317-328.
[24] Hilditch, C.J. (1968). An application of graph theory in pattern recognition, Machine Intelligence 3: 325-347.
[25] Hilditch, C.J. (1969). Linear skeletons from square cupboards, Machine Intelligence 4: 403-420.
[26] Huang, L., Wan, G. and Liu, C. (2003). An improved parallel thinning algorithm, ICDAR '03: Proceedings of the Seventh International Conference on Document Analysis and Recognition, Washington, DC, USA, pp. 780-783.
[27] Jaisimha, M.Y., Haralick, R.M. and Dori, D. (1994). Quantitative performance evaluation of thinning algorithms under noisy conditions, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, pp. 678-683.
[28] Jang, B.K. and Chin, R.T. (1992). One-pass parallel thinning: Analysis, properties and quantitative evaluation, Transactions on Pattern Analysis and Machine Intelligence 14(11): 1129-1140.
[29] Ji, X. and Feng, J. (2004). A new approach to thinning based on time-reversed heat conduction model, International Conference on Image Processing (ICIP), Singapore, Vol. 1, pp. 653-656.
[30] Ju, T., Baker, M.L. and Chiu, W. (2007). Computing a family of skeletons of volumetric models for shape description, Computer-Aided Design 39(5): 352-360.
[31] Kirsch, R.A., Cahn, L., Ray, C. and Urban, G.H. (1958). Experiments in processing pictorial information with a digital computer, IRE-ACM-AIEE '57 (Eastern): Papers and Discussions Presented at the December 9-13, 1957, Eastern Joint Computer Conference: Computers with Deadlines to Meet, New York, NY, USA, pp. 221-229.
[32] Klette, R. and Rosenfeld, A. (2004). Digital Geometry: Geometric Methods for Digital Image Analysis, Morgan Kaufmann, San Francisco, CA.
[33] Lam, L., Lee, S.-W. and Suen, C.Y. (1992). Thinning methodologies-A comprehensive survey, IEEE Transactions on Pattern Analysis and Machine Intelligence 14(9): 869-885.
[34] Lee, S.-W., Lam, L. and Suen, C. Y. (1991). Performance evaluation of skeletonizing algorithms for document image processing, Proceedings of the First International Conference on Document Analysis and Recognition, Saint-Malo, France, pp. 260-271.
[35] Malina, W., Ablemeyko, S. and Pawlak, W. (2002). Fundamentals of Digital Image Processing, Akademicka Oficyna Wydawnicza EXIT, Warsaw, (in Polish).
[36] Mallat, S. (1989). A theory for multiresolution signal decomposition: The wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7): 674-693.
[37] Parker, J., Jennings, C. and Molaro, D. (1994). A force-based thinning strategy with sub-pixel precision, Vision Interface Conference, Banff, Alberta, Canada.
[38] Pavlidis, T. (1980). A thinning algorithm for discrete binary images, Computer Graphics Image Processing 13(2): 142-157.
[39] Pavlidis, T. (1981). A flexible parallel thinning algorithm, Proceedings of the International Conference on Pattern Recognition and Image Processing, Dallas, TX, USA, pp. 162-167.
[40] Pavlidis, T. (1982a). Algorithms for Graphics and Image Processing, Springer, Computer Science Press, Rockville, MD.
[41] Pavlidis, T. (1982b). An asynchronous thinning algorithm, Computer Graphics Image Processing 20(2): 133-157.
[42] Pervouchine, V. and Leedham, G. (2005). Document examiner feature extraction: Thinned vs. skeletonised handwriting images, Proceedings of the IEEE Region 10 Technical Conference (TENCON05), Melbourne, Australia, pp. 1-6.
[43] Quadros,W. R., Shimada, K. and Owen, S. J. (2004). 3d discrete skeleton generation by wave propagation on pr-octree for finite element mesh sizing, SM '04: Proceedings of the Ninth ACM Symposium on Solid Modeling and Applications, Aire-la-Ville, Switzerland, pp. 327-332.
[44] Rockett, P. I. (2005). An improved rotation-invariant thinning algorithm, IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10): 1671-1674.
[45] Rosenfeld, A. (1975). A characterization of parallel thinning algorithms, Information and Control 29(3): 286-291, http://theory.lcs.mit.edu/~iandc/ic75.html
[46] Rutovitz, D. (1966). Pattern recognition, Journal of Royal Statistical Society 129(4): 504-530.
[47] Saeed, K. (2001). Text and image processing: Non-interrupted skeletonization, Proceedings of the 1st International IEEE Conference on Circuits, Systems, Comunications and Computers-IEEE-CSCC'01, Crete, Greece, Advances in Scientific Computing, Computational Intelligence and Applications, World Scientific Engineering Society Press, pp. 350-354.
[48] Saeed, K. (2004). Image Analysis for Object Recognition, Białystok Technical University Press, Białystok.
[49] Saeed, K. and Niedzielski, R. (1999). Experiments on thinning of cursive-style alphabets, International Conference on Information Technologies for Education, Science and Business ITESB'99, Minsk, Belarus, pp. 45-49.
[50] Saeed, K., Rybnik, M. and Tabedzki, M. (2001). Implementation and advanced results on the non-interrupted skeletonization algorithm, in W. Skarbek (Ed.) Computer Analysis of Images and Patterns, Lecture Notes in Computer Science, Vol. 2124, Springer-Verlag, Heidelberg, pp. 601-609.
[51] Wan, Y., Yao, L., Xu, B. and Zeng, P. (2008). A distance map based skeletonization algorithm and its application in fiber recognition, International Conference on Audio, Language and Image Processing, Shanghai, China, pp. 1769-1774.
[52] You, X. and Tang, Y. Y. (2007). Wavelet-based approach to character skeleton, IEEE Transactions on Image Processing 16(5): 1220-1231.
[53] Zhang, Y. Y. and Wang, P. P. (1996). A parallel thinning algorithm with two-subiteration that generates one-pixel-wide skeletons, International Conference on Pattern Recognition, Vienna, Austria, Vol. 4, pp. 457-461.