Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2010_20_2_a2, author = {Zhai, G. and Xu, X.}, title = {A unified approach to stability analysis of switched linear descriptor systems under arbitrary switching}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {249--259}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a2/} }
TY - JOUR AU - Zhai, G. AU - Xu, X. TI - A unified approach to stability analysis of switched linear descriptor systems under arbitrary switching JO - International Journal of Applied Mathematics and Computer Science PY - 2010 SP - 249 EP - 259 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a2/ LA - en ID - IJAMCS_2010_20_2_a2 ER -
%0 Journal Article %A Zhai, G. %A Xu, X. %T A unified approach to stability analysis of switched linear descriptor systems under arbitrary switching %J International Journal of Applied Mathematics and Computer Science %D 2010 %P 249-259 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a2/ %G en %F IJAMCS_2010_20_2_a2
Zhai, G.; Xu, X. A unified approach to stability analysis of switched linear descriptor systems under arbitrary switching. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 2, pp. 249-259. http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a2/
[1] Boyd, S., El Ghaoui, L., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA.
[2] Branicky, M.S. (1998). Multiple Lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic Control 43(4): 475-482.
[3] Cobb, D. (1983). Descriptor variable systems and optimal state regulation, IEEE Transactions on Automatic Control 28(5): 601-611.
[4] DeCarlo, R., Branicky, M.S., Pettersson, S. and Lennartson, B. (2000). Perspectives and results on the stability and stabilizability of hybrid systems, Proceedings of the IEEE 88(7): 1069-1082.
[5] Hespanha, J.P. and Morse, A.S. (2002). Switching between stabilizing controllers, Automatica 38(11): 1905-1917.
[6] Hu, B., Zhai, G. and Michel, A.N. (2002). Hybrid static output feedback stabilization of second-order linear timeinvariant systems, Linear Algebra and Its Applications 351-352: 475-485.
[7] Ikeda, M., Lee, T.W. and Uezato, E. (2000). A strict LMI condition for H2 control of descriptor systems, Proceedings of the 39th IEEE Conference on Decision and Control, CDC 2000, Sydney, Australia, pp. 601-604.
[8] Ishida, J.Y. and Terra, M.H. (2001). On the Lyapunov theorem for descriptor systems, Proceedings of the 40th IEEE Conference on Decision and Control, CDC 2001, Orlando, FL, USA, pp. 2860-2864.
[9] Kaczorek, T. (2002). Polynomial approach to pole shifting to infinity in singular systems by feedbacks, Bulletin of the Polish Academy of Sciences: Technical Sciences 50(2): 134-144.
[10] Kaczorek, T. (2004). Infinite eigenvalue assignment by output feedback for singular systems, International Journal of Applied Mathematics and Computer Science 14(1): 19-23.
[11] Lewis, F.L. (1986). A survey of linear singular systems, Circuits Systems Signal Process 5(1): 3-36.
[12] Liberzon, D. (2003). Switching in Systems and Control, Birkh¨auser, Boston, MA.
[13] Liberzon, D., Hespanha, J.P. and Morse, A.S. (1999). Stability of switched systems: A Lie-algebraic condition, Systems Control Letters 37(3): 117-122.
[14] Liberzon, D. and Morse, A.S. (1999). Basic problems in stability and design of switched systems, IEEE Control Systems Magazine 19(5): 59-70.
[15] Masubuchi, I., Kamitane, Y., Ohara, A. and Suda, N. (1997). H∞ control for descriptor systems: A matrix inequalities approach, Automatica 33(4): 669-673.
[16] Narendra, K.S. and Balakrishnan, J. (1994). A common Lyapunov function for stable LTI systems with commuting A-matrices, IEEE Transactions on Automatic Control 39(12): 2469-2471.
[17] Sun, Z. and Ge, S.S. (2005a)Analysis and synthesis of switched linear control systems, Automatica 41(2): 181-195.
[18] Sun, Z. and Ge, S.S. (2005b). Switched Linear Systems: Control and Design, Springer, London.
[19] Takaba, K., Morihara, N. and Katayama, T. (1995). A generalized Lyapunov theorem for descriptor systems, Systems Letters 24(1): 49-51.
[20] Uezato, E. and Ikeda, M. (1999). Strict LMI conditions for stability, robust stabilization, and H∞ control of descriptor systems, Proceedings of the 38th IEEE Conference on Decision and Control, CDC 1999, Phoenix, AZ, USA, pp. 4092-4097.
[21] Xu, S. and Yang, C. (1999). Stabilization of discrete-time singular systems: A matrix inequalities approach, Automatica 35(9): 1613-1617.
[22] Zhai, G., Hu, B., Yasuda, K. and Michel, A.N. (2001). Disturbance attenuation properties of time-controlled switched systems, Journal of The Franklin Institute 338(7): 765-779.
[23] Zhai, G., Hu, B., Yasuda, K. and Michel, A.N. (2002). Stability and L2 gain analysis of discrete-time switched systems, Transactions of the Institute of Systems, Control and Information Engineers 15(3): 117-125.
[24] Zhai, G., Liu, D., Imae, J. and Kobayashi, T. (2006). Lie algebraic stability analysis for switched systems with continuous-time and discrete-time subsystems, IEEE Transactions on Circuits and Systems II 53(2): 152-156.
[25] Zhai, G. and Xu, X. (2009). A unified approach to analysis of switched linear descriptor systems under arbitrary switching, Proceedings of the 48th IEEE Conference on Decision and Control, CDC 2009, Shanghai, China, pp. 3897-3902.
[26] Zhai, G., Kou, R., Imae, J. and Kobayashi, T. (2009a). Stability analysis and design for switched descriptor systems, International Journal of Control, Automation, and Systems 7(3): 349-355.
[27] Zhai, G., Xu, X., Imae, J. and Kobayashi, T. (2009b). Qualitative analysis of switched discrete-time descriptor systems, International Journal of Control, Automation, and Systems 7(4): 512-519.