A hierarchical decomposition of decision process Petri nets for modeling complex systems
International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 2, pp. 349-366.

Voir la notice de l'article provenant de la source Library of Science

We provide a framework for hierarchical specification called Hierarchical Decision Process Petri Nets (HDPPNs). It is an extension of Decision Process Petri Nets (DPPNs) including a hierarchical decomposition process that generates less complex nets with equivalent behavior. As a result, the complexity of the analysis for a sophisticated system is drastically reduced. In the HDPPN, we represent the mark-dynamic and trajectory-dynamic properties of a DPPN. Within the framework of the mark-dynamic properties, we show that the HDPPN theoretic notions of (local and global) equilibrium and stability are those of the DPPN. As a result in the trajectory-dynamic properties framework, we obtain equivalent characterizations of that of the DPPN for final decision points and stability. We show that the HDPPN mark-dynamic and trajectory-dynamic properties of equilibrium, stability and final decision points coincide under some restrictions. We propose an algorithm for optimum hierarchical trajectory planning. The hierarchical decomposition process is presented under a formal treatment and is illustrated with application examples.
Keywords: hierarchy, decomposition, structuring mechanisms, re-usable components, decision process, DPPN, stability, Lyapunov methods, optimization
Mots-clés : hierarchia, rozkład, składnik wielokrotnego użycia, proces decyzyjny, stabilność, optymalizacja, metoda Lyapunova, DPPN
@article{IJAMCS_2010_20_2_a10,
     author = {Clempner, J.},
     title = {A hierarchical decomposition of decision process {Petri} nets for modeling complex systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {349--366},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a10/}
}
TY  - JOUR
AU  - Clempner, J.
TI  - A hierarchical decomposition of decision process Petri nets for modeling complex systems
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2010
SP  - 349
EP  - 366
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a10/
LA  - en
ID  - IJAMCS_2010_20_2_a10
ER  - 
%0 Journal Article
%A Clempner, J.
%T A hierarchical decomposition of decision process Petri nets for modeling complex systems
%J International Journal of Applied Mathematics and Computer Science
%D 2010
%P 349-366
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a10/
%G en
%F IJAMCS_2010_20_2_a10
Clempner, J. A hierarchical decomposition of decision process Petri nets for modeling complex systems. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 2, pp. 349-366. http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a10/

[1] Bellman, R.E. (1957). Dynamic Programming, Princeton University Press, Princeton, NJ.

[2] Bouyakoub, S. and Belkhir, A. (2008). H-SMIL-Net: A hierarchical Petri net model for SMIL documents, 10-th International Conference on Computer Modeling and Simulation, Cambridge, UK, pp. 106-111.

[3] Buchholz, P. (1994). Hierarchical high level Petri nets for complex system analysis, in R. Valette(Ed.) Application and Theory of Petri Nets, Lecture Notes in Computer Science, Vol. 815, Springer, Zaragoza, pp. 119-138.

[4] Clempner, J., Medel, J. and Cârsteanu, A. (2005a). Extending games with local and robust Lyapunov equilibrium and stability condition, International Journal of Pure and Applied Mathematics 19(4): 441-454.

[5] Clempner, J. (2005b). Optimizing the decision process on Petri nets via a Lyapunov-like function, International Journal of Pure and Applied Mathematics 19(4): 477-494.

[6] Clempner, J. (2005c). Colored decision process Petri nets: Modeling, analysis and stability, International Journal of Applied Mathematics and Computer Science 15(3): 405-420.

[7] Dai, X. , Li, A.J. and Meng, Z. (2009). Hierarchical Petri net modelling of reconfigurable manufacturing systems with improved net rewriting systems, International Journal of Computer Integrated Manufacturing 22(2): 158-177.

[8] Gomes, L. and Barros, J.P. (2005). Structuring and composability issues in Petri nets modeling, IEEE Transactions on Industrial Informatics 1(2): 112-123.

[9] Hammer, M. and Champy, J. (1993). Reengineering the Corporation: A Manifesto for Business Revolution, HarperBusiness, New York, NY.

[10] Howard, R.A. (1960). Dynamic Programming and Markov Processes, MIT Press, Cambridge, MA.

[11] Huber, P., Jensen, K. and Shapiro, R. (1990). Hierarchies in colored Petri nets, Lecture Notes in Computer Science Vol. 483, Springer-Verlag, pp. 313-341.

[12] Jensen, K. (1992). Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use, Vol. 1: Basic Concepts, EATCS Monographs in Theoretical Computer Science, Springer-Verlag, New York, NY.

[13] Kalman, R.E. and Bertram, J.E. (1960). Control system analysis and design via the second method of Lyapunov, Journal of Basic Engineering 82: 371-393.

[14] Lakshmikantham, V., Leela, S. and Martynyuk, A.A. (1990). Practical Stability of Nonlinear Systems, World Scientific, Singapore.

[15] Lakshmikantham, V., Matrosov, V.M. and Sivasundaram, S. (1991). Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer Academic Publishers, Dordrecht.

[16] Murata, T. (1989). Petri nets: Properties, analysis and applications, Proceedings of the IEEE 77(4): 541-580.

[17] Passino, K.M., Burguess, K.L. and Michel, A.N. (1995). Lagrange stability and boundedness of discrete event systems, Journal of Discrete Event Systems: Theory and Applications 5(5): 383-403.

[18] Puterman, M.L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley, New York, NY.