Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2010_20_2_a10, author = {Clempner, J.}, title = {A hierarchical decomposition of decision process {Petri} nets for modeling complex systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {349--366}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a10/} }
TY - JOUR AU - Clempner, J. TI - A hierarchical decomposition of decision process Petri nets for modeling complex systems JO - International Journal of Applied Mathematics and Computer Science PY - 2010 SP - 349 EP - 366 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a10/ LA - en ID - IJAMCS_2010_20_2_a10 ER -
%0 Journal Article %A Clempner, J. %T A hierarchical decomposition of decision process Petri nets for modeling complex systems %J International Journal of Applied Mathematics and Computer Science %D 2010 %P 349-366 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a10/ %G en %F IJAMCS_2010_20_2_a10
Clempner, J. A hierarchical decomposition of decision process Petri nets for modeling complex systems. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 2, pp. 349-366. http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_2_a10/
[1] Bellman, R.E. (1957). Dynamic Programming, Princeton University Press, Princeton, NJ.
[2] Bouyakoub, S. and Belkhir, A. (2008). H-SMIL-Net: A hierarchical Petri net model for SMIL documents, 10-th International Conference on Computer Modeling and Simulation, Cambridge, UK, pp. 106-111.
[3] Buchholz, P. (1994). Hierarchical high level Petri nets for complex system analysis, in R. Valette(Ed.) Application and Theory of Petri Nets, Lecture Notes in Computer Science, Vol. 815, Springer, Zaragoza, pp. 119-138.
[4] Clempner, J., Medel, J. and Cârsteanu, A. (2005a). Extending games with local and robust Lyapunov equilibrium and stability condition, International Journal of Pure and Applied Mathematics 19(4): 441-454.
[5] Clempner, J. (2005b). Optimizing the decision process on Petri nets via a Lyapunov-like function, International Journal of Pure and Applied Mathematics 19(4): 477-494.
[6] Clempner, J. (2005c). Colored decision process Petri nets: Modeling, analysis and stability, International Journal of Applied Mathematics and Computer Science 15(3): 405-420.
[7] Dai, X. , Li, A.J. and Meng, Z. (2009). Hierarchical Petri net modelling of reconfigurable manufacturing systems with improved net rewriting systems, International Journal of Computer Integrated Manufacturing 22(2): 158-177.
[8] Gomes, L. and Barros, J.P. (2005). Structuring and composability issues in Petri nets modeling, IEEE Transactions on Industrial Informatics 1(2): 112-123.
[9] Hammer, M. and Champy, J. (1993). Reengineering the Corporation: A Manifesto for Business Revolution, HarperBusiness, New York, NY.
[10] Howard, R.A. (1960). Dynamic Programming and Markov Processes, MIT Press, Cambridge, MA.
[11] Huber, P., Jensen, K. and Shapiro, R. (1990). Hierarchies in colored Petri nets, Lecture Notes in Computer Science Vol. 483, Springer-Verlag, pp. 313-341.
[12] Jensen, K. (1992). Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use, Vol. 1: Basic Concepts, EATCS Monographs in Theoretical Computer Science, Springer-Verlag, New York, NY.
[13] Kalman, R.E. and Bertram, J.E. (1960). Control system analysis and design via the second method of Lyapunov, Journal of Basic Engineering 82: 371-393.
[14] Lakshmikantham, V., Leela, S. and Martynyuk, A.A. (1990). Practical Stability of Nonlinear Systems, World Scientific, Singapore.
[15] Lakshmikantham, V., Matrosov, V.M. and Sivasundaram, S. (1991). Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer Academic Publishers, Dordrecht.
[16] Murata, T. (1989). Petri nets: Properties, analysis and applications, Proceedings of the IEEE 77(4): 541-580.
[17] Passino, K.M., Burguess, K.L. and Michel, A.N. (1995). Lagrange stability and boundedness of discrete event systems, Journal of Discrete Event Systems: Theory and Applications 5(5): 383-403.
[18] Puterman, M.L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley, New York, NY.