Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2010_20_1_a6, author = {Nowak, {\L}. D. and Pas{\l}awska-Po{\l}udniak, M. and Twardowska, K.}, title = {On the convergence of the {wavelet-Galerkin} method for nonlinear filtering}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {93--108}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a6/} }
TY - JOUR AU - Nowak, Ł. D. AU - Pasławska-Południak, M. AU - Twardowska, K. TI - On the convergence of the wavelet-Galerkin method for nonlinear filtering JO - International Journal of Applied Mathematics and Computer Science PY - 2010 SP - 93 EP - 108 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a6/ LA - en ID - IJAMCS_2010_20_1_a6 ER -
%0 Journal Article %A Nowak, Ł. D. %A Pasławska-Południak, M. %A Twardowska, K. %T On the convergence of the wavelet-Galerkin method for nonlinear filtering %J International Journal of Applied Mathematics and Computer Science %D 2010 %P 93-108 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a6/ %G en %F IJAMCS_2010_20_1_a6
Nowak, Ł. D.; Pasławska-Południak, M.; Twardowska, K. On the convergence of the wavelet-Galerkin method for nonlinear filtering. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 1, pp. 93-108. http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a6/
[1] Ahmed, N. U. and Radaideh, S. M. (1997). A powerful numerical technique solving Zakai equation for nonlinear filtering, Dynamics and Control 7(3): 293-308.
[2] Bennaton, J. F. (1985). Discrete time Galerkin approximations to the nonlinear filtering solution, Journal of Mathematical Analysis and Applications 110: 364-383.
[3] Beuchler, S., Schneider, R. and Schwab, C. (2004). Multiresolution weighted norm equivalences and applications, Numerische Mathematik 98(2): 67-97.
[4] Bramble, J. H., Cohen, A. and Dahmen, W. (2003). Multiscale Problems and Methods in Numerical Simulations. Lectures given at the C.I.M.E. Summer School, held in Martina Franca, Italy, September 9-15, 2001, Lecture Notes in Mathematics, Vol. 1825, Springer, Berlin.
[5] Ciesielski, Z. (1961). Hölder condition for realizations of Gaussian processes, Transactions of American Mathematical Society 99: 403-413.
[6] Cohen, A. (2003). Numerical Analysis of Wavelet Methods, North-Holland, Amsterdam.
[7] Cohen, A., Daubechies, I. and Feauveau, J.-C. (1992). Biorthogonal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics 45(5): 485-560.
[8] Crisan, D., Gaines, J. and Lyons, T. (1998). Convergence of a branching particle method to the solution of the Zakai equation, SIAM Journal on Applied Mathematics 58(5): 1568-1590.
[9] Dahmen, W. (1997). Wavelet and multiscale methods for operator equations, Acta Numerica 6: 55-228.
[10] Dahmen, W. and Schneider, R. (1999). Composite wavelet bases for operator equations, Mathematics of Computation 68(228): 1533-1567.
[11] Dai, X. and Larson, D. R. (1998). Wandering vectors for unitary systems and orthogonal wavelets, Memoirs of the American Mathematical Society 134(640).
[12] Daubechies, I. (1992). Ten Lectures on Wavelets, CBMSNSF Regional Conference Series in Applied Mathematics, Vol. 61, SIAM, Philadelphia, PA.
[13] Eisenstat, S. C., Elman, H. C. and Schultz, M. H. (1983). Variational iterative methods for nonsymmetric systems of linear equations, SIAM Journal on Numerical Analysis 20: 345-357.
[14] Elliott, R. J. and Glowinski, R. (1989). Approximations to solutions of the Zakai filtering equation, Stochastic Analysis and Applications 7(2): 145-168.
[15] Germani, A. and Picconi, M. (1984). A Galerkin approximation for the Zakai equation, in P. Thoft-Christensen (Ed.), System Modelling and Optimization (Copenhagen, 1983), Lecture Notes in Control and Information Sciences, Vol. 59, Springer-Verlag, Berlin, pp. 415-423.
[16] Hilbert, N., Matache, A.-M. and Schwab, C. (2004). Sparse wavelet methods for option pricing under stochastic volatility, Technical Report 2004-07, Seminar für angewandte Mathematik, Eidgenössische Technische Hochschule, Zürich.
[17] Itô, K. (1996). Approximation of the Zakai equation for nonlinear filtering, SIAM Journal on Control and Optimization 34(2): 620-634.
[18] Kloeden, P. E. and Platen, E. (1992). Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin.
[19] Krylov, N. V. and Rozovskiĭ, B. L. (1981). Stochastic evolution equations, Journal of Soviet Mathematics 14: 1233-1277.
[20] Kurtz, T. G. and Ocone, D. L. (1988). Unique characterization of conditional distributions in nonlinear filtering, The Annals of Probability 16(1): 80-107.
[21] Liptser, R. S. and Shiryaev, A. N. (1977). Statistics of Random Processes. I. General Theory, Springer-Verlag, New York, NY.
[22] McKean, H. P. (1969). Stochastic Integrals, Academic Press, New York, NY.
[23] Pardoux, E. (1991). Filtrage non linéaire et équations aux dérivées partielles stochastiques associeés, École d' Été de Probabilités de Saint-Flour XIX, 1989, Lecture Notes in Mathematics, Vol. 1464, Springer-Verlag, Berlin, pp. 67-163.
[24] Rozovskiĭ, B. L. (1991). A simple proof of uniqueness for Kushner and Zakai equations, in E. Mayer-Wolf, E. Merzbach and A. Shwartz (Eds), Stochastic Analysis, Academic Press, Boston, MA, pp. 449-458.
[25] Thomée, V. (1997). Galerkin Finite Element Methods for Parabolic Problems, Springer-Verlag, Berlin.
[26] Twardowska, K., Marnik, T. and Pasławska-Południak, M. (2003). Approximation of the Zakai equation in a nonlinear problem with delay, International Journal of Applied Mathematics and Computer Science 13(2): 151-160.
[27] von Petersdorff, T. and Schwab, C. (1996). Wavelet approximations for first kind boundary integral equations on polygons, Numerische Mathematik 74(4): 479-519.
[28] von Petersdorff, T. and Schwab, C. (2003). Wavelet discretizations of parabolic integrodifferential equations, SIAM Journal on Numerical Analysis 41(1): 159-180.
[29] Wang, J. (2002). Spline wavelets in numerical resolution of partial differential equations, in D. Deng, D. Huang, R.-Q. Jia, W. Lin and J. Wand (Eds), Wavelet Analysis and Applications. Proceedings of an International Conference, Guangzhou, China, November 15-20, 1999, AMS/IP Studies in Advanced Mathematics, Vol. 25, American Mathematical Society, Providence, RI, pp. 257-277.
[30] Wojtaszczyk, P. (1997). A Mathematical Introduction to Wavelets, London Mathematical Society Student Texts, Vol. 37, Cambridge University Press, Cambridge.
[31] Yau, S.-T. and Yau, S. S.-T. (2000). Real time solution of nonlinear filtering problem without memory I, Mathematical Research Letters 7(5-6): 671-693.
[32] Yau, S.-T. and Yau, S. S.-T. (2008). Real time solution of nonlinear filtering problem without memory II, SIAM Journal on Control and Optimization 47: 163-195.
[33] Yserentant, H. (1990). Two preconditioners based on the multilevel splitting of finite element spaces, Numerische Mathematik 58(2): 163-184.