Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2010_20_1_a12, author = {Ploix, S. and Yassine, A. A. and Flaus, J.-M.}, title = {A new efficient and flexible algorithm for the design of testable subsystems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {175--190}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a12/} }
TY - JOUR AU - Ploix, S. AU - Yassine, A. A. AU - Flaus, J.-M. TI - A new efficient and flexible algorithm for the design of testable subsystems JO - International Journal of Applied Mathematics and Computer Science PY - 2010 SP - 175 EP - 190 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a12/ LA - en ID - IJAMCS_2010_20_1_a12 ER -
%0 Journal Article %A Ploix, S. %A Yassine, A. A. %A Flaus, J.-M. %T A new efficient and flexible algorithm for the design of testable subsystems %J International Journal of Applied Mathematics and Computer Science %D 2010 %P 175-190 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a12/ %G en %F IJAMCS_2010_20_1_a12
Ploix, S.; Yassine, A. A.; Flaus, J.-M. A new efficient and flexible algorithm for the design of testable subsystems. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 1, pp. 175-190. http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a12/
[1] Blanke, M., Kinnaert, M. and Staroswiecki, M. (2003). Diagnosis and Fault Tolerant Control, Springer, Berlin.
[2] Cassar, J. and Staroswiecki, M. (1997). A structural approach for the design of failure detection and identification systems, IFAC, IFIP, IMACS Conference on Control of Industrial Systems, Belfort, France, pp. 329-334.
[3] Chittaro, L. and Ranon, R. (2004). Hierarchical model-based diagnosis based on structural abstraction, Artificial Intelligence 155(1-2): 147-182.
[4] Codd, E. (1970). A relational model of data for large shared data banks, Communications of the ACM 13(6): 377-387.
[5] Console, L., Picardi, C. and Ribando, M. (2000). Diagnosis and diagnosability analysis using process algebra, Proceedings of the Eleventh International Workshop on Principles of Diagnosis (DX-00), MX, Morelia, Mexico, pp. 25-32.
[6] Dague, P. (2001). Théorie logique du diagnostic à base de modèles, in B. Dubuisson (Ed.), Diagnostic, Intelligence artificielle et reconnaissance de formes, Hermès Science, Paris, pp. 17-104.
[7] Davis, R. (1984). Diagnostic reasoning based on structure and behavior, Artificial Intelligence 24(1-3): 347-410.
[8] De Kleer, J. and Williams, B. C. (1987). Diagnosing multiple faults, Artificial Intelligence 32(1): 97-130.
[9] De Kleer, J. and Williams, B. C. (1992). Diagnosis with behavioral modes, in W.C. Hamscher, I.de Kleer and L. Console (Eds), Readings in Model-Based Diagnosis, Morgan Kaufmann Publishers Inc., San Francisco, CA, pp. 124-130.
[10] Dechetr, R. (2003). Constraint Processing, Morgan Kaufmann Publishers, San Francisco, CA.
[11] Declerck, P. and Staroswiecki, M. (1991). Characterization of the canonical components of a structural graph for fault detection in large scale industrial plants, European Control Conference, Grenoble, France, pp. 298-303.
[12] Dulmage, A. L. and Mendelsohn, N. S. (1959). A structure theory of bi-partite graphs of finite exterior extension, Transactions of the Royal Society of Canada 53(III): 1-13.
[13] Frank, P. M. (1990). Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy-A survey and some new results, Automatica 26(3): 459-471.
[14] Frisk, E. (2000). Residual generator for non-linear polynomial systems-A Grobner basis approach, IFAC Fault Detection, Supervision and Safety for Technical Processes, Budapest, Hungary, pp. 979-984.
[15] Fron, A. (1994). Programmation par contraintes, Addison-Wesley, Paris.
[16] Górny, B. and Ligęza, A. (2001). Review of systematic conflict generation in model-based diagnosis of dynamic systems, IFAC Workshop on Manufacturing, Modelling Manageent and Control, Prague, Czech Republic, pp. 86-91.
[17] Iwasaki, Y. and Simo, H. A. (1994). Causality and model abstraction, Artificial Intelligence 67(1): 143-194.
[18] Krysander, M., Åslund, J. and Nyberg, M. . (2008). An efficient algorithm for finding minimal overconstrained subsystems for model-based-diagnosis, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 38(1): 197-206.
[19] Krysander, M., Åslund, J. and Nyberg, M. (2005). An efficient algorithm for finding over-constrained sub-systems for construction of diagnostic tests, 16th International Workshop on Principles of Diagnosis (DX-05), Pacific Grove, CA, USA.
[20] Ligęza, A. and Górny, B. (2000). Systematic conflict generation in model-based diagnosis, SAFEPROCESS'2000: 4th IFAC Symposium on Fault Detection and Supervision and Safety for Technological Processes, Budapest, Hungary, Vol. II, pp. 1103-1108.
[21] Mishra, P. and Eich, M. (1992). Join processing in relational databases, ACM Computing Surveys 24(1): 63-113.
[22] Nayak, P. P. and Levy, A. Y. (1995). A semantic theory of abstractions, 14th International Joint Conference on Artificial Intelligence IJCAI-95, Montreal, Canada, pp. 196-203.
[23] Nyberg, M. and Krysander, M. (2003). Combining AI, FDI, and statistical hypothesis-testing in a framework for diagnosis, IFAC SAFEPROCESS'03, Washington, DC, USA, pp. 813-818.
[24] Patton, R., Frank, P. and Clark (Eds), R. (1989). Fault Diagnosis in Dynamic Systems, International Series in Systems and Control Engineering, Prentice Hall, London.
[25] Ploix, S., Désinde, M. and Michau, F. (2004). Assessment and diagnosis for virtual reality training, International Symposium on Advanced Robot Systems and Virtual Reality, Grenoble, France.
[26] Ploix, S., Désinde, M. and Touaf, S. (2005). Automatic design of detection tests in complex dynamic systems, 16th IFAC World Congress, Prague, Czech Republic.
[27] Ploix, S., Touaf, S. and Flaus, J. M. (2003). A logical framework for isolation in fault diagnosis, SAFEPROCESS' 2003, Washington, DC, USA.
[28] Pulido, B. and Alonso, C. (2002). Possible conflicts, arrs, and conflicts, 13th International Workshop on Principles of Diagnosis (DX02), Semmering, Austria, pp. 122-128.
[29] Reiter, R. (1987). A theory of diagnosis from first principles, Artificial Intelligence 32(1): 57-95.
[30] Russell, S. and Norvig, P. (2003). Artificial Intelligence, A Modern Approach, 2nd Ed., Prentice Hall, Upper Saddle River, NJ.
[31] Staroswiecki, M., Cocquempot, V. and Cassar, J. P. (1991). Observer based and parity space approaches for failure detection and identification, IMACS-IFAC International Symposium, Lille, France, Vol. 25, pp. 536-541.
[32] Staroswiecki, M. and Declerck, P. (1989). Analytical redundancy in nonlinear interconnected systems by means of structural analysis, IFAC AIPAC'89 Symposium, Nantes, France, Vol. 2, pp. 23-27.
[33] Struss, P. (1992). What's in SD? Towards a theory of modeling for diagnosis, in W. Hamscher, L. Console and J. De Kleer (Eds), Readings in Model-Based Diagnosis, Morgan Kaufman, San Francisco, CA, pp. 419-448.
[34] Travé-Massuyès, L., Escobet, T. and Olive, X. (2006). Diagnosability analysis based on component supported analytical redundancy relations, IEEE Transactions on Systems, Man, And Cybernetics-Part A: Systems and Humans 36(6): 1146-1160.
[35] Travé-Massuyès, L., Escobet, T. and Spanache, S. (2003). Diagnosability analysis based on component supported analytical redundancy relations, IFAC Workshop SAFEPROCESS' 2003, Washington, DC, USA, pp.897-902.
[36] Willsky, A. (1976). A survey of design methods for failure detection in dynamic systems, Automatica 21(4): 601-611.