Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2010_20_1_a1, author = {Patan, K.}, title = {Local stability conditions for discrete-time cascade locally recurrent neural networks}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {23--34}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a1/} }
TY - JOUR AU - Patan, K. TI - Local stability conditions for discrete-time cascade locally recurrent neural networks JO - International Journal of Applied Mathematics and Computer Science PY - 2010 SP - 23 EP - 34 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a1/ LA - en ID - IJAMCS_2010_20_1_a1 ER -
%0 Journal Article %A Patan, K. %T Local stability conditions for discrete-time cascade locally recurrent neural networks %J International Journal of Applied Mathematics and Computer Science %D 2010 %P 23-34 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a1/ %G en %F IJAMCS_2010_20_1_a1
Patan, K. Local stability conditions for discrete-time cascade locally recurrent neural networks. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) no. 1, pp. 23-34. http://geodesic.mathdoc.fr/item/IJAMCS_2010_20_1_a1/
[1] Back, A. D. and Tsoi, A. C. (1991). FIR and IIR synapses, A new neural network architecture for time series modelling, Neural Computation 3(3): 375-385.
[2] Campolucci, P. and Piazza, F. (2000). Intrinsic stability-control method for recursive filters and neural networks, IEEE Transactions on Circuit and Systems-II: Analog and Digital Signal Processing 47(8): 797-802.
[3] Cannas, B., Cincotti, S., Marchesi, M. and Pilo, F. (2001). Learnig of Chua's circuit attractors by locally recurrent neural networks, Chaos Solitons Fractals 12(11): 2109-2115.
[4] Cao, J., Yuan, K. and Li, H. (2006). Global asymptotical stability of recurrent neural networks with multiple discrete delays and distributed delays, IEEE Transactions on Neural Networks 17(6): 1646-1651.
[5] Ensari, T. and Arik, S. (2005). Global stability analysis of neural networks with multiple time varying delays, IEEE Transactions on Automatic Control 50(11): 1781-1785.
[6] Fasconi, P., Gori, M. and Soda, G. (1992). Local feedback multilayered networks, Neural Computation 4(1): 120-130.
[7] Forti, M., Nistri, P. and Papini, D. (2005). Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain, IEEE Transactions on Neural Networks 16(6): 1449-1463.
[8] Gori, M., Bengio, Y. and Mori, R. D. (1989). BPS: A learning algorithm for capturing the dynamic nature of speech, International Joint Conference on Neural Networks, Washington DC, USA, Vol. II, pp. 417-423.
[9] Gupta, M. M., Jin, L. and Homma, N. (2003). Static and Dynamic Neural Networks. From Fundamentals to Advanced Theory, John Wiley Sons, Hoboken, NJ.
[10] Gupta, M. M. and Rao, D. H. (1993). Dynamic neural units with application to the control of unknown nonlinear systems, Journal of Intelligent and Fuzzy Systems 1(1): 73-92.
[11] Marcu, T., Mirea, L. and Frank, P. M. (1999). Development of dynamical neural networks with application to observer based fault detection and isolation, International Journal of Applied Mathematics and Computer Science 9(3): 547-570.
[12] Patan, K. (2007). Stability analysis and the stabilization of a class of discrete-time dynamic neural network, IEEE Transactions on Neural Networks 18(3): 660-673.
[13] Patan, K. (2008a). Aproximation of state-space trajectories by locally recurrent globally feed-forward neural networks, Neural Networks 21(1): 59-64.
[14] Patan, K. (2008b). Artificial Neural Networks for the Modelling and Fault Diagnosis of Technical Processes, Lecture Notes in Control and Information Sciences, Vol. 377, Springer-Verlag, Berlin.
[15] Patan, K. (2008c). Stability criteria for three-layer locally recurrent networks, Proceedings of the 17th IFAC World Congress on Automatic Control, Seoul, Korea, (on CDROM).
[16] Patan, K. and Parisini, T. (2005). Identification of neural dynamic models for fault detection and isolation: The case of a real sugar evaporation process, Journal of Process Control 15(1): 67-79.
[17] Patan, K., Witczak, M. and Korbicz, J. (2008). Towards robustness in neural network based fault diagnosis, International Journal of Applied Mathematics and Computer Science 18(4): 443-454, DOI: 10.2478/v10006-008-0039-2.
[18] Tsoi, A. C. and Back, A. D. (1994). Locally recurrent globally feedforward networks: A critical review of architectures, IEEE Transactions on Neural Networks 5(2): 229-239.
[19] Xiang-Qun, L. and Zhang, H. Y. (2000). Fault detection and diagnosis of permanent-magnet DC motor based on parameter estimation and neural network, IEEE Transactions on Industrial Electronics 47(5): 1021-1030.
[20] Zhang, J., Morris, A. J. and Martin, E. B. (1998). Long term prediction models based on mixed order locally recurrent neural networks, Computers Chemical Engineering 22(7-8): 1051-1063.