Zeros in linear systems with time delay in state
International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 4, pp. 609-617.

Voir la notice de l'article provenant de la source Library of Science

The concept of invariant zeros in a linear time-invariant system with state delay is considered. In the state-space framework, invariant zeros are treated as triples: complex number, nonzero state-zero direction, input-zero direction. Such a treatment is strictly related to the output-zeroing problem and in that spirit the zeros can be easily interpreted. The problem of zeroing the system output is discussed. For systems of uniform rank, the first nonzero Markov parameter comprises a certain amount of information concerning invariant zeros, output-zeroing inputs and zero dynamics. General formulas for output-zeroing inputs and zero dynamics are provided.
Keywords: linear system, time delay in state, state-space methods, output-zeroing problem, invariant zeros
Mots-clés : system liniowy, opóźnienie czasowe, opóźnienie w stanie, zera niezmienne
@article{IJAMCS_2009_19_4_a7,
     author = {Tokarzewski, J.},
     title = {Zeros in linear systems with time delay in state},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {609--617},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a7/}
}
TY  - JOUR
AU  - Tokarzewski, J.
TI  - Zeros in linear systems with time delay in state
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2009
SP  - 609
EP  - 617
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a7/
LA  - en
ID  - IJAMCS_2009_19_4_a7
ER  - 
%0 Journal Article
%A Tokarzewski, J.
%T Zeros in linear systems with time delay in state
%J International Journal of Applied Mathematics and Computer Science
%D 2009
%P 609-617
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a7/
%G en
%F IJAMCS_2009_19_4_a7
Tokarzewski, J. Zeros in linear systems with time delay in state. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 4, pp. 609-617. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a7/

[1] Bourles, H. and Fliess, M. (1997). Finite poles and zeros of linear systems: An intrinsic approach, International Journal of Control 68(4):897-922.

[2] Górecki, H., Fuksa, S., Grabowski, P. and Korytowski, A. (1989). Analysis and Synthesis of Time Delay Systems, PWN/Wiley,Warsaw/Chichester.

[3] Hale, J. (1977). Theory of Functional Differential Equations, Springer, New York, NY.

[4] Isidori, A. (1995). Nonlinear Control Systems, Springer Verlag, London.

[5] Kamen, E. W., Khargonekar, P. P. and Tannenbaum, A. (1985). Stabilization of time-delay systems using finite dimensional compensators, IEEE Transactions on Automatic Control 30(1): 75-78.

[6] Kharitonov, V. L. (1999). Robust stability analysis of time delay systems: A survey, Annual Reviews in Control 23(1): 185-196.

[7] Kharitonov V. L. and Hinrichsen, D. (2004). Exponential estimates for time delay systems, Systems and Control Letters 53(5):395-405.

[8] Lee, E. B. and Olbrot, A. W. (1981). Observability and related structural results for linear hereditary systems, International Journal of Control 34(6):1061-1078.

[9] MacFarlane, A. G. J. and Karcanias, N. (1976). Poles and zeros of linear multivariable systems: A survey of the algebraic, geometric and complex variable theory, International Journal of Control 24(1):33-74.

[10] Marro, G. (1996). Multivariable regulation in geometric terms: Old and new results, in C. Bonivento, G. Marro, R. Zanasi (Eds.), Colloquium on Automatic Control, Lecture Notes in Control and Information Sciences, Vol. 215, Springer Verlag, London, pp. 77-138.

[11] Pandolfi, L. (1982). Transmission zeros of systems with delays, International Journal of Control 36(6): 959-976.

[12] Pandolfi, L. (1986). Disturbance decoupling and invariant subspaces for delay systems, Applied Mathematics and Optimization 14(1): 55-72.

[13] Richard, J. P. (2003). Time-delay systems: An overview of some recent advances and open problems, Automatica 39(10): 1667-1694.

[14] Schrader, C. B. and Sain, M. K. (1989). Research on system zeros: A survey, International Journal of Control 50(4):1407-1433.

[15] Sontag, E. D. (1990). Mathematical Control Theory, Springer Verlag, New York, NY.

[16] Tokarzewski, J. (2002). Zeros in Linear Systems: A Geometric Approach, Warsaw University of Technology Press, Warsaw.

[17] Tokarzewski, J. (2006). Finite Zeros in Discrete-Time Control Systems, Lecture Notes in Control and Information Sciences, Vol. 338, Springer Verlag, Berlin.