Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_4_a7, author = {Tokarzewski, J.}, title = {Zeros in linear systems with time delay in state}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {609--617}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a7/} }
TY - JOUR AU - Tokarzewski, J. TI - Zeros in linear systems with time delay in state JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 609 EP - 617 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a7/ LA - en ID - IJAMCS_2009_19_4_a7 ER -
Tokarzewski, J. Zeros in linear systems with time delay in state. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 4, pp. 609-617. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a7/
[1] Bourles, H. and Fliess, M. (1997). Finite poles and zeros of linear systems: An intrinsic approach, International Journal of Control 68(4):897-922.
[2] Górecki, H., Fuksa, S., Grabowski, P. and Korytowski, A. (1989). Analysis and Synthesis of Time Delay Systems, PWN/Wiley,Warsaw/Chichester.
[3] Hale, J. (1977). Theory of Functional Differential Equations, Springer, New York, NY.
[4] Isidori, A. (1995). Nonlinear Control Systems, Springer Verlag, London.
[5] Kamen, E. W., Khargonekar, P. P. and Tannenbaum, A. (1985). Stabilization of time-delay systems using finite dimensional compensators, IEEE Transactions on Automatic Control 30(1): 75-78.
[6] Kharitonov, V. L. (1999). Robust stability analysis of time delay systems: A survey, Annual Reviews in Control 23(1): 185-196.
[7] Kharitonov V. L. and Hinrichsen, D. (2004). Exponential estimates for time delay systems, Systems and Control Letters 53(5):395-405.
[8] Lee, E. B. and Olbrot, A. W. (1981). Observability and related structural results for linear hereditary systems, International Journal of Control 34(6):1061-1078.
[9] MacFarlane, A. G. J. and Karcanias, N. (1976). Poles and zeros of linear multivariable systems: A survey of the algebraic, geometric and complex variable theory, International Journal of Control 24(1):33-74.
[10] Marro, G. (1996). Multivariable regulation in geometric terms: Old and new results, in C. Bonivento, G. Marro, R. Zanasi (Eds.), Colloquium on Automatic Control, Lecture Notes in Control and Information Sciences, Vol. 215, Springer Verlag, London, pp. 77-138.
[11] Pandolfi, L. (1982). Transmission zeros of systems with delays, International Journal of Control 36(6): 959-976.
[12] Pandolfi, L. (1986). Disturbance decoupling and invariant subspaces for delay systems, Applied Mathematics and Optimization 14(1): 55-72.
[13] Richard, J. P. (2003). Time-delay systems: An overview of some recent advances and open problems, Automatica 39(10): 1667-1694.
[14] Schrader, C. B. and Sain, M. K. (1989). Research on system zeros: A survey, International Journal of Control 50(4):1407-1433.
[15] Sontag, E. D. (1990). Mathematical Control Theory, Springer Verlag, New York, NY.
[16] Tokarzewski, J. (2002). Zeros in Linear Systems: A Geometric Approach, Warsaw University of Technology Press, Warsaw.
[17] Tokarzewski, J. (2006). Finite Zeros in Discrete-Time Control Systems, Lecture Notes in Control and Information Sciences, Vol. 338, Springer Verlag, Berlin.