Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_4_a12, author = {K{\l}osi\'nski, R.}, title = {The steady-state impedance operator of a linear periodically time-varying one-port network and its determination}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {661--673}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a12/} }
TY - JOUR AU - Kłosiński, R. TI - The steady-state impedance operator of a linear periodically time-varying one-port network and its determination JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 661 EP - 673 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a12/ LA - en ID - IJAMCS_2009_19_4_a12 ER -
%0 Journal Article %A Kłosiński, R. %T The steady-state impedance operator of a linear periodically time-varying one-port network and its determination %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 661-673 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a12/ %G en %F IJAMCS_2009_19_4_a12
Kłosiński, R. The steady-state impedance operator of a linear periodically time-varying one-port network and its determination. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 4, pp. 661-673. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a12/
[1] Bittanti, S. and Colaneri, P. (1999). Periodic Control. John Wiley Encyclopedia of Electrical and Electronic Engineering, Wiley, New York, NY.
[2] Bittanti, S. and Colaneri, P. (2000). Invariant representations of discrete-time periodic systems, Automatica 36(12): 1777-1793.
[3] Bru, R., Romero, S. and Sanchez, E. (2004). Structural properties of positive periodic discrete-time linear systems: Canonical forms, Applied Mathematics and Computation 153(3): 697-719.
[4] Chen, T. and Qiu, L. (1997). Linear periodically time-varying discrete-time systems: Aliasing and LTI approximations, Systems and Control Letters 30(5): 225-235.
[5] Doroslovacki, M., Fan, H. and Yao, L. (1998). Wavelet-based identification of linear discrete-time systems: Robustness issue, Automatica 34(12): 1637-1640.
[6] Hu, S., Meinke, K., Chen, R. and Huajiang, O. (2007). Iterative estimators of parameters in linear models with partially variant coefficients, International Journal of Applied Mathematics and Computer Science 17(2): 179-187.
[7] Kaczorek, T. (2001). Externally and internally positive timevarying linear systems, International Journal of Applied Mathematics and Computer Science 11(4): 957-964.
[8] Kłosiński, R. (2005). Application of an identification algorithm for optimal control of compensation circuits, Proceedings of the International Conference on Power Electronics and Intelligent Control for Energy Conservation, PELINCEC 2005, Warsaw, Poland, pp. 1-6.
[9] Kłosiński, R. (2006). Periodically time-varying two-terminals at a steady state, description and identification, Proceedings of the 13th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2006, Nice, France, pp. 284-287.
[10] Kłosiński, R. (2007). Periodically variable two-terminal impedance description and measuring methods, Metrology and Measurement Systems 14(2): 375-390.
[11] Kłosiński, R. and Kozioł, M. (2007). Reconstruction of nonlinearly deformed periodic signals using inverse circular parametric operators, Proceedings of the IEEE Instrumentation and Measurement Technology Conference, IMTC 2007, Warsaw, Poland, pp. 1-6.
[12] Liu, K. (1997). Identification of linear time-varying systems, Journal of Sound and Vibration 204(4): 487-505.
[13] Liu, K. (1999). Extension of modal analysis to linear time-varying systems, Journal of Sound and Vibration 226(1): 149-167.
[14] Liu, K. and Deng, L. (2005). Experimental verification of an algorithm for identification of linear time-varying systems, Journal of Sound and Vibration 279(1): 1170-1180.
[15] Liu, M., Tse, C. K. and Wu, J. (2003). A wavelet approach to fast approximation of steady-state waveforms of power electronics circuits, International Journal of Circuit Theory and Applications 31(6): 591-610.
[16] Mehr, A. S. and Chen, T. (2002). Representations of linear periodically time-varying and multirate systems, IEEE Transactions on Signal Processing 50(9): 2221-2229.
[17] Meyer, C. D. (2000). Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, PA.
[18] Meyer, R. A. and Burrus, C. S. (1975). A unified analysis of multirate and periodically time-varying digital filters, IEEE Transactions on Circuits and Systems 22(3): 162-168.
[19] Mikołajuk, K. and Staroszczyk, Z. (2003). Time-frequency approach to analysis of time varying dynamic systems, Przegląd Elektrotechniczny 79(10): 764-767.
[20] Mikołajuk, K. and Staroszczyk, Z. (2004). Periodical variability in power systems: Small-signal models, L'Energia Electtrica 81(5-6): 97-102.
[21] Shenoy, R. G., Burnside, D. and Parks, T. (1994). Linear periodic systems and multirate filter design, IEEE Transactions on Signal Processing 42(9): 2242-2256.
[22] Siwczyński, M. (1987). Analysis of nonlinear systems with concentrated and distributed parameters by a new numerical operator method in time and frequency domain, Proceedings of Internationales Wissenschaftliches Kolloquium 1987, Ilmenau, Germany, pp. 759-762.
[23] Siwczyński, M. (1995). Optimization Methods in Power Theory of Electrical Networks, Monograph No. 183, Cracow University of Technology, Cracow, (in Polish).
[24] Siwczyński, M. and Kłosiński, R. (1997a). Current and voltage wave-form optimization with non-linear deformations for real voltage sources, COMPEL 16(2): 71-83.
[25] Siwczyński, M. and Kłosiński, R. (1997b). Synthesis of linear inertialless periodically time varying circuits for optimal compensation of non-linear distortions, Proceedings of the 9th International Symposium on Theoretical Electrical Engineering, ISTET'97, Palermo, Italy, pp. 560-563.
[26] Siwczyński, M., Pasko, M. and Kłosiński, R. (1993). Current minimization of the non-ideal voltage source with periodically time-varying parameters by means of an active compensator, Applied Mathematics and Computer Science 3(2): 329-340.
[27] Staroszczyk, Z. (2002). Power system nonstationarity and accurate power system identification procedures, Proceedings of the International Conference on Harmonics and Quality of Power, Rio de Janeiro, Brasil, pp. 1-8.
[28] Staroszczyk, Z. and Mikołajuk, K. (2004). Periodically time variance power systems impedance-Description and identification, Przegląd Elektrotechniczny 80(6): 521-526.
[29] Tam, K. C.,Wong, S. C. and Tse, C. K. (2006). A wavelet-based piecewise approach for steady-state analysis of power electronics circuits, International Journal of Circuit Theory and Applications 34(5): 559-582.
[30] Verhagen, M. and Yu, X. (1995). A class of subspace model identification algorithms to identify periodically and arbitrarily time-varying systems, Automatica 31(2): 201-216.
[31] Zadeh, L. A. (1950). Frequency analysis of variable networks, Proceedings of the Institute of Radio Engineers 38: 291-299.