Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_4_a10, author = {Zhai, G. and Okuno, S. and Imae, J. and Kobayashi, T.}, title = {A matrix inequality based design method for consensus problems in multi-agent systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {639--646}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a10/} }
TY - JOUR AU - Zhai, G. AU - Okuno, S. AU - Imae, J. AU - Kobayashi, T. TI - A matrix inequality based design method for consensus problems in multi-agent systems JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 639 EP - 646 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a10/ LA - en ID - IJAMCS_2009_19_4_a10 ER -
%0 Journal Article %A Zhai, G. %A Okuno, S. %A Imae, J. %A Kobayashi, T. %T A matrix inequality based design method for consensus problems in multi-agent systems %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 639-646 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a10/ %G en %F IJAMCS_2009_19_4_a10
Zhai, G.; Okuno, S.; Imae, J.; Kobayashi, T. A matrix inequality based design method for consensus problems in multi-agent systems. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 4, pp. 639-646. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_4_a10/
[1] Boyd, S., El Ghaoui, L., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA.
[2] Fax, J. A. (2001). Optimal and Cooperative Control of Vehicle Formations, Ph.D. dissertation, Control Dynamical Systems, California Institute of Technology, Pasadena, CA.
[3] Fax, J. A. and Murray, R. M. (2004). Information flow and cooperative control of vehicle formations, IEEE Transactions on Automatic Control 49(9): 1465-1476.
[4] Gahinet, P., Nemirovskii, A., Laub, A. and Chilali, M. (1994). The LMI control toolbox, Proceedings of the 33rd IEEE Conference on Decision and Control, Orlando, FL, USA, pp. 2038-2041.
[5] Godsil, C. and Royle, G. (2001). Algebraic Graph Theory, Springer-Verlag, Berlin.
[6] Khalil, H. K. (2002). Nonlinear Systems, 2nd Edn., Prentice Hall, Upper Saddle River, NJ.
[7] Lancaster, P. and Tismenetsky, M. (1985). The Theory of Matrices with Applications, 2nd Edn., Academic Press, Orlando, FL.
[8] Olfati-Saber, R., Fax, J. A. and Murray, R. M. (2007). Consensus and cooperation in networked multi-agent systems, Proceedings of the IEEE 95(1): 215-233.
[9] Olfati-Saber, R. and Murray, R. M. (2003). Consensus protocols for networks of dynamic agents, Proceedings of the 2003 American Control Conference, Denver, CO, USA, pp. 951-956.
[10] Olfati-Saber, R. and Murray, R. M. (2004). Consensus problems in networks of agents with switching topology and time-delays, IEEE Transactions on Automatic Control 49(9): 1520-1533.
[11] Mohar, B. (1991). The Laplacian spectrum of graphs, in Y. Alavi, G. Chartrand, O. Ollermann and A. Schwenk (Eds.), Graph Theory, Combinatorics, and Applications, Wiley, New York, NY, pp. 871-898.
[12] Pogromsky, A., Santoboni, G. and Nijmeijer, H. (2002). Partial synchronization: From symmetry towards stability, Physica D 172(1): 65-87.
[13] Wang, J., Cheng, D. and Hu, X. (2008). Consensus of multiagent linear dynamic systems, Asian Journal of Control 10(2): 144-155.
[14] Zhai, G., Ikeda, M. and Fujisaki, Y. (2001). Decentralized H∞ controller design: A matrix inequality approach using a homotopy method, Automatica 37(4): 565-572.