Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_3_a8, author = {Freihold, M. and Hofer, E. P.}, title = {Derivation of physically motivated constraints for efficient interval simulations applied to the analysis of uncertain dynamical systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {485--499}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a8/} }
TY - JOUR AU - Freihold, M. AU - Hofer, E. P. TI - Derivation of physically motivated constraints for efficient interval simulations applied to the analysis of uncertain dynamical systems JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 485 EP - 499 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a8/ LA - en ID - IJAMCS_2009_19_3_a8 ER -
%0 Journal Article %A Freihold, M. %A Hofer, E. P. %T Derivation of physically motivated constraints for efficient interval simulations applied to the analysis of uncertain dynamical systems %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 485-499 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a8/ %G en %F IJAMCS_2009_19_3_a8
Freihold, M.; Hofer, E. P. Derivation of physically motivated constraints for efficient interval simulations applied to the analysis of uncertain dynamical systems. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 3, pp. 485-499. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a8/
[1] Bendsten, C. and Staunting, O. (2007). FADBAD++, Version 2.1, Available at: http://www.fadbad.com/fadbad.html.
[2] Boyd, S., Gosh, A. and Magnani, A. (2003). Branch and bound methods, Available at: http://www.stanford.edu/class/ee392o/bb.pdf.
[3] Clausen, J. (1999). Branch and bound algorithms: Principles and examples, Available at: citeseer.ist.psu.edu/683497.html.
[4] de Figueiredo, L. H., van Iwaarden, R. and Stolfi, J. (1997). Fast interval branch-and-bound methods for unconstrained global optimization with affine arithmetic, Technical Report IC-97-08, Institute of Computing, University of Campinas, Campinas, Brazil.
[5] Hofer, E. P., Fan, Y. and Tibken, B. (1991a). Extraction of rules for model based estimation of granulocytopoiesis, in M. Frik (Ed.), 5th German-Japanese Seminar Nonlinear Problems in Dynamical Systems-Theory and Applications, Daun, Vulkaneifel, pp. 58-68.
[6] Hofer, E. P., Tibken, B. and Fliedner, T. M. (1991b). Modern control theory as a tool to describe the biomathematical model of granulocytopoiesis, in D. Möller and O. Richter (Eds.), Analyse dynamischer Systeme in Medizin, Biologie, Ökologie, Vol. 275, Springer-Verlag, Berlin, pp. 33-39.
[7] Kearfott, R. B. (1992). An interval branch and bound algorithm for bound constrained optimization problems, Journal of Global Optimization 2(3): 259-280.
[8] Keil, C. (2007). PROFIL/BIAS, Version 2.0.4, Available at: http://www.ti3.tu-harburg.de/keil/profil/.
[9] Maschke, B. M. and van der Schaft, A. J. (2000). Portcontrolled Hamiltonian representation of distributed parameter systems, in N. E. Leonard and R. Ortega (Eds.), Proceedings of the IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Princeton, NJ, USA, pp. 28-38.
[10] Moore, R. E. (1964). Error in Digital Computation, the Automatic Analysis and Control of Error, John Wiley Sons, New York, NY.
[11] Nedialkov, N. S. (2007). Interval tools for ODEs and DAEs, CD-Proceedings of the 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics SCAN 2006, Duisburg, Germany, IEEE Computer Society, Los Alamitos, CA.
[12] Pfeiffer, F. and Reithmeier, E. (1987). Roboterdynamik, Teubner, Stuttgart, (in German).
[13] Rauh, A. (2008). Theorie und Anwendung von Intervallmethoden für Analyse und Entwurf robuster und optimaler Regelungen dynamischer Systeme, Fortschritt-Berichte VDI, Reihe 8, Nr. 1148, PhD thesis, University of Ulm, Ulm, (in German).
[14] Rauh, A., Auer, E. and Hofer, E. P. (2007). ValEncIA-IVP: A comparison with other initial value problem solvers, CD-Proceedings of the 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics SCAN 2006, Duisburg, Germany, IEEE Computer Society, Los Alamitos, CA.
[15] Rauh, A., Brill, M. and Günther, C. (2009). A novel interval arithmetic approach for solving differential-algebraic equations with VALENCIA-IVP, International Journal of Applied Mathematics and Computer Science 19(3): 381-397.
[16] Singer, A. B. and Barton, P. I. (2006). Bounding the solutions of parameter dependent nonlinear ordinary differential equations, SIAM Journal on Scientific Computing 27(6): 2167-2182.
[17] The American Heritage Medical Dictionary (2007). Houghton Mifflin Company, Boston, MA.
[18] van der Schaft, A. J. (2005). Network modeling and control of physical systems, DISC theory of port-Hamiltonian systems, Available at: http://www.vf.utwente.nl/~schaftaj/downloads-diversen/DISCportbased1.pdf.
[19] van der Schaft, A. J. and Maschke, B. M. J. (2003). Port-Hamiltonian systems: A theory for modeling, simulation and control of complex physical systems, Available at: http://www-lar.deis.unibo.it/eurongeoplex-sumsch/files/lectures_1/Van Der Schaft/VDSchaft_01_PCHS.pdf.