Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_3_a2, author = {Merlet, J. P.}, title = {Interval analysis for certified numerical solution of problems in robotics}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {399--412}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a2/} }
TY - JOUR AU - Merlet, J. P. TI - Interval analysis for certified numerical solution of problems in robotics JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 399 EP - 412 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a2/ LA - en ID - IJAMCS_2009_19_3_a2 ER -
%0 Journal Article %A Merlet, J. P. %T Interval analysis for certified numerical solution of problems in robotics %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 399-412 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a2/ %G en %F IJAMCS_2009_19_3_a2
Merlet, J. P. Interval analysis for certified numerical solution of problems in robotics. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 3, pp. 399-412. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a2/
[1] Ashokaraj, I., Tsourdos, A., Silson, P. and White, B. A. (2004). Sensor based robot localisation and navigation: Using interval analysis and extended Kalman filter, Proceedings of the 5th Asian Control Conference, Melbourne, Australia.
[2] Carreras, C. and Walker, I. (2001). Interval methods for faulttree analysis in robotics, IEEE Transactions on Reliability 50(1): 3-11.
[3] Chablat, D., Wenger, P. and Merlet, J.-P. (2004). A comparative study between two three-dof parallel kinematic machines using kinetostatic criteria and interval analysis, Proceedings of the 11th IFToMM World Congress on the Theory of Machines and Mechanisms, Tianjin, China, pp. 1209-1213.
[4] Chablat, D., Wenger, P. and Merlet, J.-P. (2002). Workspace analysis of the Orthoglide using interval analysis, Advances in Robot Kinematics, Caldes de Malavalla, Spain, pp. 397-406.
[5] Clerentin, A., Delahoche, L., Brassart, E. and Izri, S. (2003). Imprecision and uncertainty quantification for the problem of mobile robot localization, Proceedings of the Performance Metrics for Intelligent Systems Workshop, Gaithersburg, MD, USA.
[6] Daney, D., Andreff, N., Chabert, G. and Papegay, Y. (2006). Interval method for calibration of parallel robots: A visionbased experimentation, Mechanism and Machine Theory 41(8): 929-944.
[7] Das, I. and Dennis, J. (1997). A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problem, Structural Optimization 14: 63-69.
[8] Didrit, O. (1997). Analyse par intervalles pour l'automatique; Résolution globale et garantie de problèmes non linéaires en robotique et en commande robuste, Ph.D. thesis, Université Paris XI Orsay, Paris.
[9] Dietmaier, P. (1998). The Stewart-Gough platform of general geometry can have 40 real postures, Advances in Robot Kinematics, Strobl, Austria, pp. 7-16.
[10] Drocourt, C., Delahoche, L., Brassart, E., Marhic, B. and Clerentin, A. (2003). Incremental construction of the robot's environmental map using interval analysis, Proceedings of the 2nd International Workshop on Global Constrained Optimization and Constraint Satisfaction (COCOS'03), Lausanne, Switzerland.
[11] Fang, H. and Merlet, J.-P. (2005). Multi-criteria optimal design of parallel manipulators based on interval analysis, Mechanism and Machine Theory 40(2): 151-171.
[12] Gough, V. and Whitehall, S. (1962). Universal tire test machine, Proceedings of the 9th International Technical Congress F.I.S.I.T.A., London, UK, Vol. 117, pp. 117-135.
[13] Hansen, E. (2004). Global Optimization Using Interval Analysis, Marcel Dekker, New York, NY.
[14] Hubert, J. and Merlet, J.-P. (2008). Singularity analysis through static analysis, Advances in Robot Kinematics, Batz/mer, France, pp. 13-20.
[15] Innocenti, C. (2001). Forward kinematics in polynomial form of the general Stewart platform, ASME Journal of Mechanical Design 123(2): 254-260.
[16] Jaulin, L., Kieffer, M., Didrit, O. and Walter, E. (2001). Applied Interval Analysis, Springer-Verlag, Heidelberg.
[17] Kearfott, R. and Manuel, N. I. (1990). INTBIS, a portable interval Newton/Bisection package, ACM Transactions on Mathematical Software 16(2): 152-157.
[18] Kieffer, M., Jaulin, L., Walter, E. and Meizel, D. (2000). Robust autonomous robot localization using interval analysis, Reliable Computing 6(3): 337-362.
[19] Kreinovich, V. (2000). Optimal finite characterization of linear problems with inexact data, Technical Report CS-00-37, University of Texas at El Paso, TX.
[20] Kreinovich, V., Lakeyev, A., Rohn, J. and Kahl, P. (1998). Computational Complexity and Feasibility of Data Processing and Interval Computations, Kluwer, Dordrecht.
[21] Lebbah, Y., Michel, C., Rueher, M., Merlet, J.-P. and Daney, D. (2004). Combining local consistencies with a new global filtering algorithm on linear relaxations, SIAM Journal of Numerical Analysis, 42(2076).
[22] Merlet, J.-P. (2004). Solving the forward kinematics of a Goughtype parallel manipulator with interval analysis, International Journal of Robotics Research 23(3): 221-236.
[23] Merlet, J.-P. (2000). ALIAS: An interval analysis based library for solving and analyzing system of equations, SEA, Toulouse, France.
[24] Merlet, J.-P. (1989). Singular configurations of parallel manipulators and Grassmann geometry, International Journal of Robotics Research 8(5): 45-56.
[25] Merlet, J.-P. and Donelan, P. (2006). On the regularity of the inverse jacobian of parallel robot, Advances in Robot Kinematics, Ljubljana, Slovenia, pp. 41-48.
[26] Moore, R. (1979). Methods and Applications of Interval Analysis, SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA.
[27] Neumaier, A. (1990). Interval Methods for Systems of Equations, Cambridge University Press, Cambridge.
[28] Neumaier, A. (2001). Introduction to Numerical Analysis, Cambridge University Press, Cambridge.
[29] Piazzi, A. and Visioli, A. (2000). Global minimum-jerk trajectory planning of robot manipulators, Transactions on Industrial Electronics 47(1): 140-149.
[30] Rao, R., Asaithambi, A. and Agrawal, S. (1998). Inverse kinematic solution of robot manipulators using interval analysis, Journal of Mechanical Design 120(1): 147-150.
[31] Redon, S. et al. (2004). Fast continuous collision detection for articulated models, Proceedings of the 9th ACM Symposium on Solid Modeling and Applications, Genoa, Italy, pp. 145-156.
[32] Rex, G. and Rohn, J. (1998). Sufficient conditions for regularity and singularity of interval matrices, SIAM Journal on Matrix Analysis and Applications 20(2): 437-445.
[33] Ronga, F. and Vust, T. (1992). Stewart platforms without computer?, Proceedings of the Conference on Real Analytic and Algebraic Geometry, Trento, Italy, pp. 197-212.
[34] Rouillier, F. (1995). Real roots counting for some robotics problems, in B. R. J-P. Merlet (Ed.), Computational Kinematics, Kluwer, Dordrecht, pp. 73-82.
[35] Seignez, E., Kieffer, M., Lambert, A., Walter, E. and Maurin, T. (2005). Experimental vehicle localization by boundederror state estimation using interval analysis, IEEE/RJS IROS, Edmonton, Canada.
[36] Tapia, R. (1971). The Kantorovitch theorem for Newton's method, American Mathematic Monthly 78(1.ea): 389-392.
[37] Wampler, C. (1996). Forward displacement analysis of general six-in-parallel SPS (Stewart) platform manipulators using soma coordinates, Mechanism and Machine Theory 31(3): 331-337.
[38] Wu, W. and Rao, S. (2004). Interval approach for the modeling of tolerances and clearances in mechanism analysis, Journal of Mechanical Design 126(4): 581-592.