Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_3_a0, author = {G.-T\'oth, B. and Kreinovich, V.}, title = {Verified methods for computing {Pareto} sets: {General} algorithmic analysis}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {369--380}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a0/} }
TY - JOUR AU - G.-Tóth, B. AU - Kreinovich, V. TI - Verified methods for computing Pareto sets: General algorithmic analysis JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 369 EP - 380 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a0/ LA - en ID - IJAMCS_2009_19_3_a0 ER -
%0 Journal Article %A G.-Tóth, B. %A Kreinovich, V. %T Verified methods for computing Pareto sets: General algorithmic analysis %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 369-380 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a0/ %G en %F IJAMCS_2009_19_3_a0
G.-Tóth, B.; Kreinovich, V. Verified methods for computing Pareto sets: General algorithmic analysis. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 3, pp. 369-380. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_3_a0/
[1] Aberth, O. (2007). Introduction to Precise Numerical Methods, Academic Press, San Diego, CA.
[2] Beeson, M. (1978). Some relations between classical and constructive mathematics, Journal of Symbolic Logic 43(2): 228-246.
[3] Beeson, M. (1985). Foundations of Constructive Mathematics: Metamathematical Studies, Springer, Berlin/Heidelberg/New York, NY.
[4] Bishop, E. and Bridges, D.S. (1985). Constructive Analysis, Springer-Verlag, Berlin/Heidelberg/New York, NY.
[5] Fernández, J. and Tóth, B. (2006). Obtaining the efficient set of biobjective competitive facility location and design problems, Proceedings of the 21th European Conference on Operations Research EURO XXI, Reykjavík, Iceland, pp. T-28.
[6] Fernández, J. and Tóth, B. (2007). Obtaining an outer approximation of the efficient set of nonlinear biobjective problems, Journal of Global Optimization 38(2): 315-331.
[7] Fernández, J. and Tóth, B. (2009). Obtaining the efficient set of nonlinear biobjective optimization problems via interval branch-and-bound methods, Computational Optimization and Applications 42(3):393-419.
[8] Fernández, J., Tóth, B., Plastria, F. and Pelegrín, B. (2006). Reconciling franchisor and franchisee: A planar multiobjective competitive location and design model, in A. Seeger (Ed.) Recent Advances in Optimization, Lecture Notes in Economics and Mathematical Systems, Vol. 563, Berlin/Heidelberg/New York, NY, pp. 375-398.
[9] Figueira, J., Greco, S. and Ehrgott, M. (Eds.) (2004). Multiple Criteria Decision Analysis: State of the Art Surveys, Kluwer, Dordrecht.
[10] Kreinovich, V. (1975). Uniqueness implies algorithmic computability, Proceedings of the 4th Student Mathematical Conference, Leningrad, USSR, pp. 19-21, (in Russian).
[11] Kreinovich, V. (1979). Categories of Space-Time Models, Ph.D. dissertation, Institute of Mathematics, Soviet Academy of Sciences, Siberian Branch, Novosibirsk, (in Russian).
[12] Kreinovich, V., Lakeyev, A., Rohn, J. and Kahl, P. (1998). Computational Complexity and Feasibility of Data Processing and Interval Computations, Kluwer, Dordrecht.
[13] Kushner, B.A. (1985). Lectures on Constructive Mathematical Analysis, American Mathematical Society, Providence, RI.
[14] Nachbar, J.H. and Zame, W.R. (1996). Non-computable strategies and discounted repeated games, Economic Theory 8(1): 103-122.
[15] Nickel, S. and Puerto, J. (2005). Location Theory: A Unified Approach, Springer-Verlag, Berlin.
[16] Ruzika, S. and Wiecek, M.M. (2005). Approximation methods in multiobjective programming. Journal of Optimization Theory and Applications 126(3): 473-501.
[17] Tóth, B. and Fernández, J. (2006). Obtaining the efficient set of nonlinear biobjective optimization problems via interval branch-and-bound methods, Proceedings of the 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics SCAN'06, Duisburg, Germany.