Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_2_a6, author = {Bus{\l}owicz, M. and Kaczorek, T.}, title = {Simple conditions for practical stability of positive fractional discrete-time linear systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {263--269}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a6/} }
TY - JOUR AU - Busłowicz, M. AU - Kaczorek, T. TI - Simple conditions for practical stability of positive fractional discrete-time linear systems JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 263 EP - 269 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a6/ LA - en ID - IJAMCS_2009_19_2_a6 ER -
%0 Journal Article %A Busłowicz, M. %A Kaczorek, T. %T Simple conditions for practical stability of positive fractional discrete-time linear systems %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 263-269 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a6/ %G en %F IJAMCS_2009_19_2_a6
Busłowicz, M.; Kaczorek, T. Simple conditions for practical stability of positive fractional discrete-time linear systems. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 2, pp. 263-269. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a6/
[1] Busłowicz, M. (2008a). Stability of linear continuous-time fractional systems of commensurate order, Pomiary, Automatyka, Robotyka: 475-484, (on CD-ROM, in Polish); Journal of Automation, Mobile Robotics and Intelligent Systems 3(1): 16--21.
[2] Busłowicz, M. (2008b). Frequency domain method for stabilitym analysis of linear continuous-time fractional systems, in K. Malinowski and L. Rutkowski (Eds.), Recent Advances in Control and Automation, Academic Publishing House EXIT, Warsaw, pp. 83-92.
[3] Busłowicz, M. (2008c). Robust stability of convex combination of two fractional degree characteristic polynomials, Acta Mechanica et Automatica 2(2): 5-10.
[4] Busłowicz, M. (2008d). Practical robust stability of positive fractional scalar discrete-time systems, Zeszyty Naukowe Politechniki Śląskiej: Automatyka 151: 25-30, (in Polish).
[5] Chen, Y.-Q., Ahn, H.-S. and Podlubny, I. (2006). Robust stability check of fractional order linear time invariant systems with interval uncertainties, Signal Processing 86(10): 2611-2618.
[6] Das, S. (2008). Functional Fractional Calculus for System Identification and Controls, Springer, Berlin.
[7] Dzieliński, A. and Sierociuk, D. (2006). Stability of discrete fractional state-space systems, Proceedings of the 2-nd IFAC Workshop on Fractional Differentiation and Its Applications, IFAC FDA'06, Porto, Portugal, pp. 518-523.
[8] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, J. Wiley, New York, NY.
[9] Gałkowski K. and Kummert, A. (2005). Fractional polynomials and nD systems, Proceedings of the IEEE International Symposium on Circuits and Systems, ISCAS'2005, Kobe, Japan, (on CD-ROM).
[10] Gałkowski, K., Bachelier, O. and Kummert, A. (2006). Fractional polynomial and nD systems-A continuous case, Proceedings ot the IEEE Conference on Decision and Control, San Diego, CA, USA, pp. 2913-2917.
[11] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London.
[12] Kaczorek, T. (2007a). Reachability and controllability to zero of positive fractional discrete-time systems, Machine Intelligence and Robotic Control 6(4): 139-143.
[13] Kaczorek, T. (2007b). Reachability and controllability to zero of cone fractional linear systems, Archives of Control Sciences 17(3): 357-367.
[14] Kaczorek, T. (2007c). Choice of the forms of Lyapunov functions for positive 2D Roesser model, International Journal of Applied Mathematics and Computer Science 17(4): 471-475.
[15] Kaczorek, T. (2008a). Fractional positive continuous-time linear systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2): 223-228.
[16] Kaczorek, T. (2008b). Reachability and controllability to zero tests for standard and positive fractional discrete-time systems, Journal of Automation and System Engineering 42(6-7-8): 769-787.
[17] Kaczorek, T. (2008c). Fractional 2D linear systems, Journal of Automation, Mobile Robotics and Intelligent Systems 2(2): 5-9.
[18] Kaczorek, T. (2008d). Positive different orders fractional 2D linear systems, Acta Mechanica et Automatica 2(2): 51-58.
[19] Kaczorek, T. (2008e). Practical stability of positive fractional discrete-time systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 56(4): 313-317.
[20] Kilbas, A. A., Srivastava, H.M. and Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.
[21] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA.
[22] Sabatier, J., Agrawal, O. P. and Machado, J. A. T. (Eds.) (2007). Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering, Springer, London.
[23] Sierociuk, D. (2007). Estimation and Control of Discrete Dynamical Systems of Fractional Order in State Space, Ph.D. thesis, Faculty of Electrical Engineering, Warsaw University of Technology, Warsaw, (in Polish).
[24] Vinagre, B. M., Monje, C. A. and Calderon, A. J. (2002). Fractional order systems and fractional order control actions, Proceedings of the IEEE CDC Conference Tutorial Workshop: Fractional Calculus Applications in Automatic Control and Robotics, Las Vegas, NY, pp. 15-38.