Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_2_a2, author = {Deng, J. and Becerra, V. M. and Stobart, R.}, title = {Input constraints handling in an {MPC/feedback} linearization scheme}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {219--232}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a2/} }
TY - JOUR AU - Deng, J. AU - Becerra, V. M. AU - Stobart, R. TI - Input constraints handling in an MPC/feedback linearization scheme JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 219 EP - 232 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a2/ LA - en ID - IJAMCS_2009_19_2_a2 ER -
%0 Journal Article %A Deng, J. %A Becerra, V. M. %A Stobart, R. %T Input constraints handling in an MPC/feedback linearization scheme %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 219-232 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a2/ %G en %F IJAMCS_2009_19_2_a2
Deng, J.; Becerra, V. M.; Stobart, R. Input constraints handling in an MPC/feedback linearization scheme. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 2, pp. 219-232. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a2/
[1] Ayala-Botto, M., Boom, T. V. D., Krijgsman, A. and da Costa, J. S. (1999). Predictive control based on neural network models with I/O feedback linearization, International Journal of Control 72(17): 1538-1554.
[2] Ayala-Botto, M., Braake, H. T., da Costa, J. S. and Verbruggen, H. (1996). Constrained nonlinear predictive control based on input-output linearization using a neural network, Proceedings of the 13-th IFACWorld Congress, San Francisco, CA, USA, pp. 175-180.
[3] Becerra, V. M., Roberts, P. D. and Griffiths, G. W. (2001). Applying the extended Kalman filter to systems desribed by nonlinear differential-algebraic equations, Control Engineering Practice 9(3): 267-281.
[4] Casavola, A. and Mosca, E. (1996). Reference governor for constrained uncertain linear systems subject to bounded input disturbances, Preceedings of the 35-th Conference on Decision and Control, Kobe, Japan, pp. 3531-3536.
[5] Del-Re, L., Chapuis, J. and Nevistic, V. (1993). Stability of neural net based model predivtive control, Proceedings of the 32-nd Conference on Decision and Control, San Antonio, TX, USA, pp. 2984-2989.
[6] Deng, J. and Becerra, V. M. (2004). Real-time constrained predictive control of a 3d crane system, Proceedings of the 2004 IEEE Conference on Robotics, Automation and Mechatronics, Singapore, pp. 583-587.
[7] Garces, F. (2000). Dynamic Neural Networks for Approximate Input-Output Linearisation-Decoupling of Dynamic Systems, Ph.D. thesis, University of Reading.
[8] Garces, F., Becerra, V., Kambhampati, C. and Warwick, K. (2003). Strategies for Feedback Linearisation: A Dynamic Neural Network Approach, Springer, London.
[9] Guemghar, K., Srinivasan, B., Mullhaupt, P. and Bonvin, D. (2005). Analysis of cascade structure with predictive control and feedback linearisation, IEE Proceedings: Control Theory and Applications 152(3): 317-324.
[10] Henson, M. A. and Kurtz, M. J. (1994). Input-output linearisation of constrained nonlinear processes, Nonlinear Control, AICHE Annual Meeting, San Franciso, CA, USA, pp. 1-20.
[11] Henson, M. A. and Seborg, D. E. (1993). Theoretical analysis of unconstrained nonlinear model predictive control, International Journal of Control 58(5): 1053-1080.
[12] Isidori, A. (1995). Nonlinear Control Systems, 2nd Edition, Springer, Berlin/New York, NY.
[13] Kurtz, M. and Henson, M. (1997). Input-output linearizing control of constrained nonlinear processes, Journal of Process Control 7(1): 3-17.
[14] Maciejowski, J. M. (2002). Predictive Control with Constraints, Prentice Hall, London.
[15] Maybeck, P. S. (1982). Stochastic Models, Estimation and Control, Academic Press, New York, NY.
[16] Nevistic, V. (1994). Feasible Suboptimal Model Predictive Control for Linear Plants with State Dependent Constraints, Postdiploma thesis, Swiss Federal Institute of Technology, Automatica Control Laboratory, ETH, Zurich.
[17] Nevistic, V. and Morari, M. (1995). Constrained control of feedback-linearizable systems, Proceedings of the European Control Conference, Rome, Italy, pp. 1726-1731.
[18] Nevistic, V. and Primbs, J. A. (1996). Model predictive control: Breaking through constraints, Proceedings of the 35-th Conference on Decision and Control, Kobe, Japan, pp. 3932-3937.
[19] Oliveiria, S. D., Nevistic, V. and Morari, M. (1995). Control of nonlinear systems subject to input constraints, Preprints of the IFAC Symposium on Nonlinear Control Systems, NOLCOS'95, Tahoe City, CA, USA, Vol. 1, pp. 15-20.
[20] Perttunen, C. D., Jones, D. R. and Stuckman, B. E. (1993). Lipschitzian optimization without the Lipschitz constant, Journal of Optimization Theory and Application 79(1): 157-181.
[21] Poznyak, A. S., Sanchez, E. N. and Yu, W. (2001). Differential Neural Networks for Robust Nonlinear Control, World Scientific, Singapore.
[22] Rossiter, J. A. (2003). Model Based Predictive Control: A Practical Approach, CRC Press, Boca Raton, FL, USA.
[23] Scattolini, R. and Colaneri, P. (2007). Hierarchical model predictive control, Proceedings of the 46-th IEEE Conference on Decision and Control, New Orleans, LA, USA, pp. 4803-4808.
[24] van den Boom, T. (1997). Robust nonlinear predictive control using feedback linearization and linear matrix inequalities, Proceedings of the American Control Conference, Albuquerque, NM, USA, pp. 3068-3072.