Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_2_a12, author = {Barszcz, T.}, title = {Decomposition of vibration signals into deterministic and nondeterministic components and its capabilities of fault detection and identification}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {327--335}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a12/} }
TY - JOUR AU - Barszcz, T. TI - Decomposition of vibration signals into deterministic and nondeterministic components and its capabilities of fault detection and identification JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 327 EP - 335 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a12/ LA - en ID - IJAMCS_2009_19_2_a12 ER -
%0 Journal Article %A Barszcz, T. %T Decomposition of vibration signals into deterministic and nondeterministic components and its capabilities of fault detection and identification %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 327-335 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a12/ %G en %F IJAMCS_2009_19_2_a12
Barszcz, T. Decomposition of vibration signals into deterministic and nondeterministic components and its capabilities of fault detection and identification. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 2, pp. 327-335. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_2_a12/
[1] Antoni, J. and Randall, R.B. (2004). Unsupervised noise cancellation for vibration signals: Part I-Evaluation of adaptive algorithms, Mechanical Systems and Signal Processing 18(1): 89-101.
[2] Barszcz, T. (2004). Proposal of new method for mechanical vibration measurement, Metrology and Measurement Systems 11(4): 409-421.
[3] Chaturvedi, G.K. and Thomas, D.W. (1981). Adaptive noise cancelling and condition monitoring, Journal of Sound and Vibration 76(3): 391-405.
[4] Haykin, S. (1996). Adaptive Filter Theory, Prentice-Hall, Upper Saddle River, NJ.
[5] Ho, D. and Randall, R.B. (2000). Optimisation of bearing diagnostic techniques using simulated and actual bearing faults, Mechanical Systems and Signal Processing 14(5): 763-788.
[6] Lee, S.K. and White, P.R. (1998). The enhancement of impulsive noise and vibration signals for fault detection in rotating and reciprocating machinery, Journal of Sound and Vibration 217(3): 485-505.
[7] Shao, Y. and Nezu, K. (2005). Design of mixture de-noising for detecting faulty bearing signals, Journal of Sound and Vibration 282(4): 899-917.
[8] Shynk, J.J. (1992). Frequency-domain and multirate adaptive filtering, IEEE Signal Processing Magazine 9(1): 14-37.
[9] The MathWorks (2006). Filter Design Toolbox, Matlab documentation, Mathworks V4.2 /R2008a/.
[10] Widrow, B., Glover, J. R., McCool, J. M., Kaunitz, J., Williams, C. S., Hearn, R. H., Zeidler, J. R., Dong, E. and Goodlin, R. C. (1975). Adaptive noise cancelling: Principles and applications, Proceedings of the IEEE 63(12): 1692-1716.
[11] Zeidler, J., Satorius, E., Chabries, D. and Wexler, H. (1978). Adaptive enhancement of multiple sinusoids in uncorrelated noise, IEEE Transactions on Acoustics, Speech, and Signal Processing 26(3): 240-254.
[12] Zieliński, T.P. (2007). Digital Signal Processing. From Theory to Applications, WKŁ, Warsaw, (in Polish).
[13] Żółtowski, B. and Cempel, C. (Eds.) (2004). Engineering of Machinery Diagnostics, PTDT ITE PIB Radom, Warsaw/Bydgoszcz/Radom, (in Polish).