Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_1_a4, author = {Ardakani, M. K. and Noorossana, R. and Niaki, S. T. A. and Lahijanian, H.}, title = {Robust parameter design using the weighted metric method - {The} case of 'the smaller the better'}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {59--68}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_1_a4/} }
TY - JOUR AU - Ardakani, M. K. AU - Noorossana, R. AU - Niaki, S. T. A. AU - Lahijanian, H. TI - Robust parameter design using the weighted metric method - The case of 'the smaller the better' JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 59 EP - 68 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_1_a4/ LA - en ID - IJAMCS_2009_19_1_a4 ER -
%0 Journal Article %A Ardakani, M. K. %A Noorossana, R. %A Niaki, S. T. A. %A Lahijanian, H. %T Robust parameter design using the weighted metric method - The case of 'the smaller the better' %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 59-68 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_1_a4/ %G en %F IJAMCS_2009_19_1_a4
Ardakani, M. K.; Noorossana, R.; Niaki, S. T. A.; Lahijanian, H. Robust parameter design using the weighted metric method - The case of 'the smaller the better'. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 1, pp. 59-68. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_1_a4/
[1] Asgharpour, M. J., (1998). Multiple Criteria Decision Making, Tehran University Press, Tehran.
[2] Borkowski, J. J. and Lucas, J. M., (1997). Designs of mixed resolution for process robustness studies, Technometrics 39(1): 63-70.
[3] Borror, C. M. and Montgomery, D. C., (2000). Mixed resolution designs as alternatives to Taguchi inner/outer array designs for robust design problems, Quality and Reliability Engineering International 16(2): 117-127.
[4] Box, G. E. P., Bisgaard S., and Fung C., (1988). An explanation and critique of Taguchi's contributions to quality engineering, Quality and Reliability Engineering International 4(2): 123-131.
[5] Box, G. E. P. and Jones, S., (1992). Split-plot designs for robust product experimentation, Journal of Applied Statistics 19(1): 3-26.
[6] Copeland, K. and Nelson, P. R., (1996). Dual response optimization via direct function minimization, Journal of Quality Technology 28(3): 331-336.
[7] Chankong, V. and Haimes, Y., (1983). Multiobjective Decision Making: Theory and Methodology, North Holland, New York, NY.
[8] Deb, k., (2001). Multi-objective Optimization Using Evolutionary Algorithms, Wiley, New York, NY.
[9] Del Castillo, E., Alvarez, M. J., Ilzarbe, L. and Viles, E., (2007). A new design criterion for robust parameter experiments, Journal of Quality Technology 39(3): 279-295.
[10] Del Castillo, E. and Montgomery, D. C., (1993). A nonlinear programming solution to the dual response problem, Journal of Quality Technology 25(2): 199-204.
[11] Drain, D., Borror, C. M., Anderson-Cook, C. M and Montgomery, D. C., (2005). Response surface design for correlated noise variables, Journal of Probability and Statistical Science 3(2): 247-281.
[12] Draper, N. R. and Smith, H., (1998). Applied Regression Analysis, 2nd Ed., Wiley, New York, NY.
[13] Fan, S. K. and Del Castillo, E., (1999). Calculation of an optimal region of operation for dual response systems fitted from experimental data, Journal of the Operational Research Society 50(8): 826-836.
[14] Fathi, Y., (1991). A nonlinear programming approach to the parameter design problem, European Journal of Operational Research 53(3): 371-381.
[15] Hwang, C. L. and Masud, A. S. Md., (1979). Multiple Objective Decision Making Methods and Applications, Springer, Berlin.
[16] Jeong, I. and Kim, K., (2005). D-STEM: A modified step method with desirability function concept, Computers and Operations Research 32(12): 3175-3190.
[17] Khattree, P., (1996). Robust parameter design: A response surface approach, Journal of Quality Technology 28(2): 187-198.
[18] Khuri A. I., (1996). Response surface models with mixed effects, Journal of Quality Technology 28(2): 177-186.
[19] Kim, Y. J., and Cho, B. R., (2002). Development of prioritybased robust design, Quality Engineering 14(3): 355-363.
[20] Kim, K. and Lin, D. K. J., (1998). Dual response surface optimization: A fuzzy modeling approach, Journal of Quality Technology 30(1): 1-10.
[21] Koksoy, O. and Doganaksoy, N., (2003). Joint optimization of mean and standard deviation using response surface methods, Journal of Quality Technology 35(3): 239-252.
[22] Kunert, J., Auer, C., Erdbrugge, M. and Ewers, R., (2007). An experiment to compare Taguchi's product array and the combined array, Journal of Quality Technology 39(1): 17-34.
[23] Lin, D. and Tu, W., (1995). Dual response surface optimization, Journal of Quality Technology 27(1): 34-39.
[24] Lucas, J. M., (1994). How to achieve a robust process using response surface methodology, Journal of Quality Technology 25(3): 248-260.
[25] Montgomery, D. C., (1990). Using fractional factorial designs for robust process development, Quality Engineering 3(2): 193-205.
[26] Montgomery, D. C., (1999). Experimental design for product and process design and development, Journal of the Royal Statistical Society D 48(2): 159-177.
[27] Myers, R. H., Kim, Y. and Griffiths, K. L., (1997). Response surface methods and the use of noise variables, Journal of Quality Technology 29(4): 429-440.
[28] Myers, R. H., Khuri, A. I. and Vining, G. G., (1992). Response surface alternatives to the Taguchi robust parameter design approach, The American Statistician 46(2): 131-139.
[29] Myers, R. H., Montgomery, D. C., Vining, G. G., Kowalski, S. M. and Borror, C. M. (2004). Response surface methodology: A retrospective and current literature review, Journal of Quality Technology 36(1): 53-77.
[30] Myers, R. H. and Montgomery, D. C. (2002). Response Surface Methodology: Process and Product Optimization using Designed Experiments, 2nd Ed., Wiley, New York, NY.
[31] Nair, V. N., (1992). Taguchi's parameter design: A panel discussion, Technometrics 34(2): 127-161.
[32] Nelder, J. A. and Mead, R., (1965). A simplex method for function minimization, Computer Journal 7(4): 308-313.
[33] Pignatiello, J. J. Jr. and Ramberg, J. S., (1991). The topten triumphs and tragedies of Genichi Taguchi, Quality Engineering 4(2): 211-225.
[34] Pledger, M., (1996). Observable uncontrollable factors in parameter design, Journal of Quality Technology 28(2): 153-162.
[35] Romano, D., Varetto, M. and Vicario, G., (2004). Multiresponse robust design: A general framework based on combined array, Journal of Quality Technology 36(1): 27-37.
[36] Shoemaker, A. C., Tsui, K. L. and Wu, C. F. J., (1991). Economical experimentation methods for robust parameter design, Technometrics 33(4): 415-427.
[37] Taguchi, G., (1987), System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Cost, Quality Resources, White Plains, NJ.
[38] Tang, L. C. and Xu, K., (2002). A unified approach for dual response optimization, Journal of Quality Technology 34(4): 437-447.
[39] Vining, G. G. and Myers, R. H., (1990). Combining Taguchi and response surface philosophies: A dual response approach, Journal of Quality Technology 22(1): 38-45.
[40] Welch, W. J., Yu, T. K., Kang, S. M. and Sacks, J., (1990). Computer experiments for quality control by parameter design, Journal of Quality Technology 22(1): 15-22.