Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2009_19_1_a11, author = {Marusak, P. M. and Tatjewski, P.}, title = {Effective dual-mode fuzzy {DMC} algorithms with on-line quadratic optimization and guaranteed stability}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {127--141}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_1_a11/} }
TY - JOUR AU - Marusak, P. M. AU - Tatjewski, P. TI - Effective dual-mode fuzzy DMC algorithms with on-line quadratic optimization and guaranteed stability JO - International Journal of Applied Mathematics and Computer Science PY - 2009 SP - 127 EP - 141 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_1_a11/ LA - en ID - IJAMCS_2009_19_1_a11 ER -
%0 Journal Article %A Marusak, P. M. %A Tatjewski, P. %T Effective dual-mode fuzzy DMC algorithms with on-line quadratic optimization and guaranteed stability %J International Journal of Applied Mathematics and Computer Science %D 2009 %P 127-141 %V 19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_1_a11/ %G en %F IJAMCS_2009_19_1_a11
Marusak, P. M.; Tatjewski, P. Effective dual-mode fuzzy DMC algorithms with on-line quadratic optimization and guaranteed stability. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) no. 1, pp. 127-141. http://geodesic.mathdoc.fr/item/IJAMCS_2009_19_1_a11/
[1] Blevins, T., McMillan, G., Wojsznis, W. and Brown, M. (2003). Advanced Control Unleashed, ISA-The Instrumentation, Systems, and Automation Society, Research Triangle Park, NC.
[2] Camacho, E. and Bordons, C. (1999). Model Predictive Control, Springer-Verlag, London.
[3] Cao, S., Rees, N. and Feng, G. (1997). Analysis and design for a class of complex control systems. Part I: Fuzzy modeling and identification, Automatica 33(6): 1017-1028.
[4] Chen, J., Xi, Y. and Zhang, Z. (1998). A clustering algorithm for fuzzy model identification, Fuzzy Sets and Systems 98(3): 319-329.
[5] Cutler, C. and Ramaker, B. (1980). Dynamic matrix control-A computer control algorithm, Proceedings of the Joint Automatic Control Conference, San Francisco, CA, USA, paper no. WP5-B.
[6] Driankov, D., Hellendoorn, H. and Reinfrank, M. (1993). An Introduction to Fuzzy Control, Springer-Verlag, Berlin.
[7] Garcia, C. (1984). Quadratic dynamic matrix control of nonlinear processes: An application to a batch reaction process, Proceedings of the AIChE Annual Meeting, San Francisco, CA, USA, paper no. 82f.
[8] Garcia, C. and Morshedi, A. (1986). Quadratic programming solution of dynamic matrix control (QDMC), Chemical Engineering Communications 46(1-3): 73-87.
[9] Gattu, G. and Zafiriou, E. (1992). Nonlinear quadratic dynamic matrix control with state estimation, Industrial and Engineering Chemistry Research 31(4): 1096-1104.
[10] Lee, J. and Ricker, N. (1994). Extended Kalman filter based nonlinear model predictive control, Industrial and Engineering Chemistry Research 33(6): 1530-1541.
[11] Li, W. and Biegler, L. (1989). Multistep, Newton-type control strategies for constrained, nonlinear processes, Chemical Engineering Research and Design 67(Nov.): 562-577.
[12] Maciejowski, J. (2002). Predictive Control with Constraints, Prentice Hall, Harlow.
[13] Marusak, P. (2002). Predictive control of nonlinear plants using dynamic matrix and fuzzy modeling, Ph.D. thesis, Warsaw University of Technology, Warsaw, (in Polish).
[14] Marusak, P. and Tatjewski, P. (2000). Fuzzy dynamic matrix control algorithms for nonlinear plants, Proceedings of the 6-th International Conference on Methods and Models in Automation and Robotics MMAR 2000, Międzyzdroje, Poland, pp. 749-754.
[15] Marusak, P. and Tatjewski, P. (2001). Stability analysis of nonlinear control systems with fuzzy DMC controllers, Proceedings of the IFAC Workshop on Advanced Fuzzy and Neural Control, AFNC'01, Valencia, Spain, pp. 21-26.
[16] Marusak, P. and Tatjewski, P. (2002). Stability analysis of nonlinear control systems with unconstrained fuzzy predictive controllers, Archives of Control Sciences 12(3): 267-288.
[17] Marusak, P. and Tatjewski, P. (2003). Stable, effective fuzzy DMC algorithms with on-line quadratic optimization, Proceedings of the American Control Conference, ACC 2003, Denver, CO, USA, pp. 3513-3518.
[18] Mayne, D., Rawlings, J., Rao, C. and Scokaert, P. (2000). Constrained model predictive control: Stability and optimality, Automatica 36(6): 789-814.
[19] Michalska, H. and Mayne, D. (1993). Robust receding horizon control of constrained nonlinear systems, IEEE Transactions on Automatic Control 38(11): 1623-1632.
[20] Morari, M. and Lee, J. (1999). Model predictive control: Past, present and future, Computers and Chemical Engineering 23(4): 667-682.
[21] Mutha, R., Cluett,W. and Penlidis, A. (1997). Nonlinear modelbased predictive control of control nonaffine systems, Automatica 33(5): 907-913.
[22] Mutha, R., Cluett, W. and Penlidis, A. (1998). Modifying the prediction equation for nonlinear model-based predictive control, Automatica 34(10): 1283-1287.
[23] Piegat, A. (2001). Fuzzy Modeling and Control, Physica-Verlag, Berlin.
[24] Rossiter, J. (2003). Model-Based Predictive Control, CRC Press, Boca Raton, FL.
[25] Scokaert, P., Mayne, D. and Rawlings, J. (1999). Suboptimal model predictive control (feasibility implies stability), IEEE Transactions on Automatic Control 44(3): 648-654.
[26] Setnes, M. and Roubos, H. (2000). GA-fuzzy modeling and classification: Complexity and performance, IEEE Transactions on Fuzzy Systems 8(5): 509-522.
[27] Takagi, T. and Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control, IEEE Transactions on Systems, Man and Cybernetics 15(1): 116-132.
[28] Tanaka, K. and Sugeno, M. (1992). Stability analysis and design of fuzzy control systems, Fuzzy Sets and Systems 45(2): 135-156.
[29] Tatjewski, P. (2007). Advanced Control of Industrial Processes; Structures and Algorithms, Springer-Verlag, London.
[30] Yager, R. and Filev, D. (1994). Essentials of Fuzzy Modeling and Control, Wiley, New York, NY.