Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2008_18_4_a6, author = {Yassine, A. A. and Ploix, S. and Flaus, J.-M.}, title = {A method for sensor placement taking into account diagnosability criteria}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {497--512}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_4_a6/} }
TY - JOUR AU - Yassine, A. A. AU - Ploix, S. AU - Flaus, J.-M. TI - A method for sensor placement taking into account diagnosability criteria JO - International Journal of Applied Mathematics and Computer Science PY - 2008 SP - 497 EP - 512 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_4_a6/ LA - en ID - IJAMCS_2008_18_4_a6 ER -
%0 Journal Article %A Yassine, A. A. %A Ploix, S. %A Flaus, J.-M. %T A method for sensor placement taking into account diagnosability criteria %J International Journal of Applied Mathematics and Computer Science %D 2008 %P 497-512 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_4_a6/ %G en %F IJAMCS_2008_18_4_a6
Yassine, A. A.; Ploix, S.; Flaus, J.-M. A method for sensor placement taking into account diagnosability criteria. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) no. 4, pp. 497-512. http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_4_a6/
[1] Apt K. (2003). Principles of Constraint Programming, Cambridge University Press, Amsterdam, The Netherlands.
[2] Blanke M., Kinnaert M., Lunze J. and Staroswiecki, M. (2006). Diagnosis and Fault-tolerant Control, Springer-Verlag, Berlin/Heidelberg.
[3] Bollobás B. (1998). Modern Graph Theory, Springer, New York, NY.
[4] Chittaro L. and Ranon R. (2004). Hierarchical model-based diagnosis based on structural abstraction, Artificial Intelligence 155(1-2): 147-182.
[5] Commault C., Dion J.-M. and Yacoub Agha S. (2006). Structural analysis for the sensor location problem in fault detection and isolation, Proceedings of the IFAC Symposium SAFEPROCESS'2006, Beijing, China, CD-ROM.
[6] Console L., Picardi C. and Ribando M. (2000). Diagnosis and diagnosability analysis using process algebra, Proceedings of the 11th International Workshop on Principles of Diagnosis DX'2000, Morelia, Mexico.
[7] Cordier M.-O., Dague P., Lévy F., Dumas M., Montmain J., Staroswiecki, M. and Travé-Massuyčs, L. (2000). A comparative analysis of AI and control theory approaches to model-based diagnosis, Proceedings of the IFAC Symposium SAFEPROCESS 2000, Budapest, Hungary, pp. 329-334.
[8] Dalton T., Klotzek P. and Frank P. (1999). Application of sensitivity theory to fuzzy logic based FDI, International Journal of Applied Mathematics and Computer Science 9(3): 619-636.
[9] de Kleer J. andWilliams B. C. (1992). Diagnosis with behavioral modes, in (W. Hamscher, L. Console and J. de Kleer, Eds.), Readings in Model-Based Diagnosis, Morgan Kaufmann Publishers Inc., San Francisco, CA, pp. 124-130.
[10] Dulmage A. L. and Mendelsohn N. S. (1959). A structure theory of bi-partite graphs of finite exterior extension, Transactions of the Royal Society of Canada 53(III): 1-13.
[11] Frisk E. and Krysander M. (2007). Sensor placement for maximum fault isolability, Proceedings of the 18th International Workshop on Principles of Diagnosis (DX-07), Nashville, TN, USA.
[12] Hamscher W., Console L. and De Kleer J. (1992). Readings in Model-Based Diagnosis, Morgan Kaufmann Publishers Inc., San Francisco, CA.
[13] Korbicz J., Patan K. and Obuchowicz A. (1999). Dynamic neural networks for process modelling in fault detection and isolation, International Journal of Applied Mathematics and Computer Science 9(3): 519-546.
[14] Koscielny J., Syfert M. and Bartys M. (1999). Fuzzy logic faut diagnosis of industrial process actuators, International Journal of Applied Mathematics and Computer Science 9(3): 653-666.
[15] Krysander M., Aslund J. and Nyberg M. (2008). An efficient algorithm for finding minimal overconstrained subsystems for model-based diagnosis, IEEE Transactions on Systems, Man and Cybernetics, Part A 38(1): 197-206.
[16] Lopez-Toribio C., Patton R. and Uppal F. (1999). Artificial intelligence approaches to fault diagnosis for dynamic systems, International Journal of Applied Mathematics and Computer Science 9(3): 471-518.
[17] Madron F. and Veverka V. (1992). Optimal selection of measuring points in complex plants by linear models, AIChE Journal 38(2): 227-236.
[18] Maquin D., Luong M. and Ragot J. (1997). Fault detection and isolation and sensor network design, European Journal of Automation 31(2): 393-406.
[19] Nyberg M. and Krysander M. (2003). Combining AI, FDI, and statistical hypothesis-testing in a framework for diagnosis, Proceedings of the IFAC Symposium SAFEPROCESS'03, Washington, DC, USA, pp. 813-818.
[20] Ploix S., Désinde M. and Touaf S. (2005). Automatic design of detection tests in complex dynamic systems, Proceedings of the 16th IFAC World Congress, Prague, Czech Republic.
[21] Ploix S., Touaf S. and Flaus J. M. (2003). A logical framework for isolation in fault diagnosis, Proceedings of the IFAC Symposium SAFEPROCESS'2003,Washington, DC, USA.
[22] Pothen A. and Chin-Ju F. (1990). Computing the block triangular form of a sparse matrix, ACM Transactions on Mathematical Software 16(4): 303-324.
[23] Pulido B. and Alonso C. (2002). Possible conflicts, arrs, and conflicts, Proceedings of the 13th International Workshop on Principles of Diagnosis (DX02), Semmering, Austria, pp. 122-128.
[24] Shumsky A. (2007). Redundancy relations for fault diagnosis in nonlinear uncertain systems, International Journal of Applied Mathematics and Computer Science 17(4): 477-489.
[25] Struss P. (1992). What's in SD? Towards a theory of modeling for diagnosis, in (W. Hamscher, L. Console and J. de Kleer, Eds.), Readings in model-based diagnosis, Morgan Kaufmann Publishers Inc., San Francisco, CA, pp. 419-449. .
[26] Struss P., Rehfus B., Brignolo R., Cascio F., Console L., Dague P., Dubois P., Dressler O. and Millet D. (2002). Modelbased tools for the integration of design and diagnosis into a common process - A project report, Proceedings of the International Workshop on Principles of Diagnosis DX'02, Semmering, Austria, pp. 25-32.
[27] Travé-Massuyčs L., Escobet T. and Milne R. (2001). Modelbased diagnosability and sensor placement application to a frame 6 gas turbine subsystem, Proceedings of the 12th International Workshop on Principles of Diagnosis, Sansicario, Via Lattea, Italy, pp. 205-212.
[28] Witczak M. (2006). Advances in model-based fault diagnosis with evolutionary algorithms and neural networks, International Journal of Applied Mathematics and Computer Science 16(1): 85-99.