Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2008_18_4_a13, author = {Rafaj{\l}owicz, E. and Wnuk, M. and Rafaj{\l}owicz, W.}, title = {Local detection of defects from image sequences}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {581--592}, publisher = {mathdoc}, volume = {18}, number = {4}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_4_a13/} }
TY - JOUR AU - Rafajłowicz, E. AU - Wnuk, M. AU - Rafajłowicz, W. TI - Local detection of defects from image sequences JO - International Journal of Applied Mathematics and Computer Science PY - 2008 SP - 581 EP - 592 VL - 18 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_4_a13/ LA - en ID - IJAMCS_2008_18_4_a13 ER -
%0 Journal Article %A Rafajłowicz, E. %A Wnuk, M. %A Rafajłowicz, W. %T Local detection of defects from image sequences %J International Journal of Applied Mathematics and Computer Science %D 2008 %P 581-592 %V 18 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_4_a13/ %G en %F IJAMCS_2008_18_4_a13
Rafajłowicz, E.; Wnuk, M.; Rafajłowicz, W. Local detection of defects from image sequences. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) no. 4, pp. 581-592. http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_4_a13/
[1] Adler J.R. (1981). The Geometry of Random Fields, Wiley Chichester.
[2] BarnsleyM. (1988). Fractals Everywhere, Academic Press, New York, NY.
[3] Benassi A., Cohen S., Istas J. (2002). Identification and properties of real harmonizable fractional levy motions, Bernoulli 8(1): 97-115.
[4] Benassi A., Cohen S., Istas J. (2003). Local self-similarity and Hausdorff dimension, Comptes Rendus Mathematique 336(3): 267-272.
[5] Chan G., Hall P. and Poskitt D. S. (1995). Periodogram-based estimators of fractal properties, Annals of Statistics 23 (5): 1684-1711.
[6] Conci A., Proenca C.B. (1998). A fractal image analysis system for fabric inspection based on a box-counting method. Computer Networks and ISDN Systems 30(20-21): 1887-1895.
[7] Constantine A.G. and Hall P. (1994). Characterizing surface smoothness via estimation of effective fractal dimension, Journal of the Royal Statistical Society: Series B 56 (1): 97-113.
[8] Davies E. R. (2005). Machine Vision: Theory, Algorithms, Practicalities, 3rd Edn., Academic Press, San Francisco, CA.
[9] Davies E. R. (2008). A generalised approach to the use of sampling for rapid object location, International Journal of Applied Mathematics of Computer Science 18(1): 7-19.
[10] Davies S. and Hall P. (1999). Fractal analysis of surface roughness by using spatial data, Journal of the Royal Statistical Society: Series B 61 (1): 3-37.
[11] Dworkin S.B. and Nye T.J. (2006). Image processing for machine vision measurement of hot formed parts, Journal of Materials Processing Technology 174 (1-3): 1-6.
[12] Falconer K. (1990). Fractal Geometry, Wiley, New York, NY.
[13] Gonzalez R.C. and Wintz P. (1977). Digital Image Processing, Addison-Wesley, Reading, MA.
[14] Hu M.K. (1962) Visual pattern recognition by moment invariants, IEEE Transactions on Information Theory 6(2): 179-187.
[15] Kent J.T. and Wood A.T. (1997), Estimating the fractal dimension of a locally self-similar Gaussian process by using increments, Journal of the Royal Statistical Society: Series B 59 (3): 679-699.
[16] Istas J. and Lang G. (1997). Quadratic variations and estimation of the local Hölder index of a Gaussian process, Annales de I'Institut Henri Poincare (B) Probability and Statistics 33 (4): 407-436.
[17] Jähne, B. (2002). Digital Image Processing, Springer-Verlag, Berlin/Heidelberg.
[18] Gill J. Y. and Werman M. (1993). Computing 2-D min, median and max filters, IEEE Transactions on Pattern Analysis and Machine Intelligence 15(5): 504-507.
[19] O'Leary P. (2005). Machine vision for feedback control in a steel rolling mill, Computers in Industry 56(8-9): 997-1004.
[20] Malamas E.N., Petrakis E. G. M., Zervakis M., Petit L. and Legat J-D. (2003). A survey on industrial vision systems, applications and tools, Image and Vision Computing 21(2): 171-188.
[21] Ott E. (1993). Chaos in Dynamical Systems, Cambridge University Press, Cambridge.
[22] Pratt P.K. (2001). Digital Image Processing, 3rd Edn., Wiley, New York, NY.
[23] Rafajłowicz E. (2008). Testing homogeneity of coefficients in distributed systems with application to quality monitoring, IEEE Transactions on Control Systems Technology 16(2): 314-321.
[24] Rafajłowicz E. (2004) Testing (non-)existence of input-output relationships by estimating fractal dimensions, IEEE Transactions Signal Processing 52(11): 3151-3159.
[25] Rosenfeld A. and Kak A.C. (1982). Digital Picture Processing, Academic Press, Inc., Orlando, FL.
[26] Schuster H.G. (1988). Deterministic Chaos, VGH Verlagsgesellschaft, Weinheim.
[27] Skubalska-Rafajłowicz E. (2005). A new method of estimation of the box-counting dimension of multivariate objects using space-filling curves, Nonlinear Analysis 63 (5-7): 1281-1287.
[28] Skubalska-Rafajłowicz E. (2008). Local correlation and entropy maps as tools for detecting defects in industrial images, International Journal of Applied Mathematics and Computer Science 18(1): 41-47.
[29] Tricot C. (1995). Curves and Fractal Dimension, Springer, New York, NY.
[30] Tsai D.-M., Lin C.-T., Chen J.-F. (2003). The evaluation of normalized cross correlations for defect detection, Pattern Recognition Letters 24 (15): 2525-2535.
[31] Wnuk M. (2008). Remarks on hardware implementation of image processing algorithms, International Journal of Applied Mathematics and Computer Science 18(1): 105-110.
[32] Van Herk M. (1992). A fast algorithm for local minimum and maximum filters on rectangular and octagonal kernels, Pattern Recognition Letters 13(7): 517-521.
[33] Vincent L. (1993). Grayscale area openings and closings, their efficient implementation and applications, Proceedings of the EURASIPWorkshop on Mathematical Morphology and its Applications to Signal Processing, Barcelona, Spain, pp. 22-27.