Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2008_18_3_a13, author = {Petruseva, S.}, title = {Emotion learning: solving a shortest path problem in an arbitrary deterministic environment in linear time with an emotional agent}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {409--421}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_3_a13/} }
TY - JOUR AU - Petruseva, S. TI - Emotion learning: solving a shortest path problem in an arbitrary deterministic environment in linear time with an emotional agent JO - International Journal of Applied Mathematics and Computer Science PY - 2008 SP - 409 EP - 421 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_3_a13/ LA - en ID - IJAMCS_2008_18_3_a13 ER -
%0 Journal Article %A Petruseva, S. %T Emotion learning: solving a shortest path problem in an arbitrary deterministic environment in linear time with an emotional agent %J International Journal of Applied Mathematics and Computer Science %D 2008 %P 409-421 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_3_a13/ %G en %F IJAMCS_2008_18_3_a13
Petruseva, S. Emotion learning: solving a shortest path problem in an arbitrary deterministic environment in linear time with an emotional agent. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) no. 3, pp. 409-421. http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_3_a13/
[1] Botelho L.M and Coelho H. (1998). Adaptive agents: Emotion learning, Association for the Advancement of Artificial Intelligence, pp. 19-24.
[2] Bozinovski S. (1995). Consequence Driven Systems, Teaching, Learning and Self-Learning Agent, Gocmar Press, Bitola.
[3] Bozinovski S. (1982). A self learning system using secondary reinforcement, in: E. Trappl (Ed.) Cybernetics and Systems Research, North-Holland Publishing Company, pp. 397-402.
[4] Bozinovski S. and Schoell P. (1999a). Emotions and hormones in learning. GMD Forschungszentrum Informationstechnik GmbH, Sankt Augustin.
[5] Bozinovski S. (1999b). Crossbar Adaptive Array: The first connectionist network that solved the delayed reinforcement learning problem, in: A. Dobnikar, N. Steele, D. Pearson, R. Albrecht (Eds.), Artificial Neural Nets and Genetic Algorithms, Springer, pp. 320-325.
[6] Bozinovski S. (2002). Motivation and emotion in anticipatory behaviour of consequence driven systems, Proceedings of the Workshop on Adaptive Behaviour in Anticipatory Learning Systems, Edinburgh, Scotland, pp. 100-119.
[7] Bozinovski S. (2003). Anticipation driven artifical personality: Building on Lewin and Loehlin, in: M. Butz, O. Sigaud, P. Gerard (Eds.) Anticipatory Behaviour in Adaptive Learning Systems, LNAI 2684, Springer-Verlag, Berlin/Heilderberg, pp. 133-150.
[8] Glaser J. (1963). General Psychopathology, Narodne Novine, Zagreb, (in Croatian).
[9] Jorgen B.J and Gutin G. (2001). Digraphs, Theory, Algorithms and Applications, Springer-Verlag, London.
[10] Koenig S. and Simmons R.(1992). Complexity Analysis of Real-Time Reinforcement Learning Applied to Finding Shortest Paths in Deterministic Domains, Carnegie Mellon University, Pittsburgh.
[11] Peng J. and Williams R. (1993). Efficient learning and planning with the Dyna fmework. Proceedings of the 2nd International Conference on Simulation of Adaptive Behaviour: From Animals to Animates, Hawaii, pp. 437-454
[12] Petruseva S. and Bozinovski S. (2000). Consequence programming: Algorithm "at subgoal go back". Mathematics Bulletin, Book 24 (L), pp. 141-152.
[13] Petruseva S. (2006a). Comparison of the efficiency of two algorithms which solve the shortest path problem with an emotional agent, Yugoslav Journal of Operations Research, 16(2): 211-226
[14] Petruseva S. (2006b). Consequence programming: Solving a shortest path problem in polynomial time using emotional learning, International Journal of Pure and Applied Mathematics, 29(4): 491-520.
[15] Sutton R. and Barto A. (1998). Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA.
[16] Whitehead S. (1991). A complexity analysis of cooperative mechanisms in reinforcement learning, Proceedings of AAAI, pp. 607-613.
[17] Whitehead S. (1992). Reinforcement learning for the adaptive control of perception and action, Ph.D. thesis, University of Rochester.
[18] Wittek G. (1995). Me, Me, Me, the Spider in the Web. The Law of Correspondence, and the Law of Projection, Verlag DAS WORT, GmbH, Marktheidenfeld-Altfeld.