Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2008_18_3_a12, author = {Yang, Y. and Huang, S. and Rao, N.}, title = {An automatic hybrid method for retinal blood vessel extraction}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {399--407}, publisher = {mathdoc}, volume = {18}, number = {3}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_3_a12/} }
TY - JOUR AU - Yang, Y. AU - Huang, S. AU - Rao, N. TI - An automatic hybrid method for retinal blood vessel extraction JO - International Journal of Applied Mathematics and Computer Science PY - 2008 SP - 399 EP - 407 VL - 18 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_3_a12/ LA - en ID - IJAMCS_2008_18_3_a12 ER -
%0 Journal Article %A Yang, Y. %A Huang, S. %A Rao, N. %T An automatic hybrid method for retinal blood vessel extraction %J International Journal of Applied Mathematics and Computer Science %D 2008 %P 399-407 %V 18 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_3_a12/ %G en %F IJAMCS_2008_18_3_a12
Yang, Y.; Huang, S.; Rao, N. An automatic hybrid method for retinal blood vessel extraction. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) no. 3, pp. 399-407. http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_3_a12/
[1] Ayala G., Leon T. and Zapater V. (2005). Different averages of a fuzzy set with an application to vessel segmentation, IEEE Transactions on Fuzzy Systems 13(3): 384-393.
[2] Bezdek J.C.(1981). Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, NY.
[3] Can A., Shen H., Turner J.N., Tanenbaum H.L., and Roysam D. B. (1999). Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Transactions on Information Technology in Biomedicine 3(2): 125-138.
[4] Chanwimaluang T. and Fan G. (2003). An efficient blood vessel detection algorithm for retinal images using local entropy thresholding, Proceedings of IEEE International Symposium on Circuits and Systems, Bangkok, Thailand, Vol. 5, pp. 21-24.
[5] Chaudhuri S., Chatterjee S., Katz N., Nelson M. and Goldbaum M. (1989). Detection of blood vessels in retinal images using two-dimensional matched filters, IEEE Transactions on Medical Imaging 8(3): 263-269.
[6] Chutatape O., Zheng L. and Krishnan S. M. (1998). Retinal blood vessel detection and tracking by matched Gaussian and Kalman filters, Proceedings of the IEEE Conference on Engineering in Medicine and Biology, Hong Kong, China, Vol. 6, pp. 3144-3149.
[7] Cote B., HartW., Goldbaum M., Kube P. and Nelson M. (1994). Classification of blood vessels in ocular fundus images, Technical report, University of California, San Diego, CA.
[8] Dunn J.C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters, Journal of Cybernetics 3(3): 32-57.
[9] EI-Khamy S. E., Ghaleb I. and EI-Yamany N. A. (2002). Fuzzy edge detection with minimum fuzzy entropy criterion, Proceedings of the Mediterranean Electrotechnical Conference, Cairo, Egypt, 1: 498-503.
[10] Gao X. H., Bharath A., Stanton A., Hughes A., Chapman N. and Thom S. (2001). A method of vessel tracking for vessel diameter measurement on retinal images, Proceedings of IEEE International Conference on Image Processing, Thessaloniki, Greece, Vol. 2, pp. 881-884.
[11] Hoover A., Kouznetsova V. and Goldbaum M. (2000). Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response, IEEE Transactions on Medical Imaging, 19(3): 203-210.
[12] Jorge J. G. L., Joao V. B. S., Roberto M. C. J. and Herbert F. J. (2003). Blood vessels segmentation in non-mydriatic images using wavelets and statistical classifiers, Proceedings of Brazilian Symposium on Computer Graphics and Image Processing, Sao Carlos, Brazil, 1: pp. 262-269.
[13] Kochner B., Schulmann D., Michaelis M., Mann G. and Englemeier K. H. (1998). Course tracking and contour extraction of retinal vessels from colour fundus photographs: Most efficient use of steerable filters for model based image analysis, SPIE Proceedings of Medical Imaging 3328(2): 755-761.
[14] Otsu N. (1979). A threshold selection method from gray level histogram, IEEE Transactions on Systems, Man, and Cybernetics 9(1): 62-66.
[15] Rawi M. A., Qutaishat M. and Arrar M. (2007). An improved matched filter for blood vessel detection of digital retinal images, Computers in Biology and Medicine 37(2): 262-267.
[16] Riveron E. F. and Guimeras N. G. (2006). Extraction of blood vessels in ophthalmic color images of human retinas, Lecture Notes in Computer Science, 4225: 118-126.
[17] Serra J. and Soille P. (1994). Mathematical Morphology and Its Applications to Image Processing, Kluwer Academic Publishers, Boston, MA.
[18] Sinthanayothin C., Boyee J.F., Williamson T.H., Cook H.L., Mensah E., Lal S. and Usher D. (2002). Automatic detection of diabetic retinopathy on digital fundus images, Diabetic Medicine 19(2): 105-112.
[19] Staal J., AbramoffM.D., NiemeijerM., ViergeverM.A. and Ginneken B. V. (2004). Ridge-based vessel segmentation in color images of the retina, IEEE Transactions on Medical Imaging 23(4): 501-509.
[20] Stapor K., Switonski A., Chrastek R. and Michelson G. (2004). Segmentation of fundus eye images using methods of mathematical morphology for glaucoma diagnosis, Lecture Notes in Computer Science, 3039: 41-48.
[21] Stapor K. and Switonski A. (2004). Automatic analysis of fundus eye images using mathematical morphology and neural networks for supporting glaucoma diagnosis, Machine Graphics Vision 13(1/2): 65-78.
[22] Tamura S., Tanaka K., Ohmori S., Okazaki K., Okada A. And Hoshi M. (1983). Semiautomatic leakage analyzing system for time series fluorescein ocular fundus angiography, Pattern Recognition 16(1): 149-162.
[23] Zana F. and Klein J.C. (2001). Segmentation of vessellike patterns using mathematical morphology and curvature evaluation, IEEE Transactions on Image Processing 10(7): 1010-1019.