Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2008_18_2_a7, author = {Respondek, J. S.}, title = {Approximate controllability of infinite dimensional systems of the n-th order}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {199--212}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_2_a7/} }
TY - JOUR AU - Respondek, J. S. TI - Approximate controllability of infinite dimensional systems of the n-th order JO - International Journal of Applied Mathematics and Computer Science PY - 2008 SP - 199 EP - 212 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_2_a7/ LA - en ID - IJAMCS_2008_18_2_a7 ER -
%0 Journal Article %A Respondek, J. S. %T Approximate controllability of infinite dimensional systems of the n-th order %J International Journal of Applied Mathematics and Computer Science %D 2008 %P 199-212 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_2_a7/ %G en %F IJAMCS_2008_18_2_a7
Respondek, J. S. Approximate controllability of infinite dimensional systems of the n-th order. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) no. 2, pp. 199-212. http://geodesic.mathdoc.fr/item/IJAMCS_2008_18_2_a7/
[1] Alotaibi S., M. Sen, B. Goodwine and K.T. Yang (2004). Controllability of cross-flow heat exchangers, International Journal of Heat and Mass Transfer 47: 913-924.
[2] Bellman R. (1960). Introduction to Matrix Analysis, McGraw-Hill, New York .
[3] Balakrishnan A.V. (1998). Dynamics and Control of Distributed Systems, Cambridge University Press, Cambridge, pp. 121-201.
[4] Brammer R. F. (1972). Controllability in linear autonomous systems with positive controllers, SIAM Journal on Control and Optimization 10: 339-353.
[5] Butkowskij A. G. (1979). Characteristics of Distributed Parameter Systems, Nauka, Moscow, (in Russian).
[6] Chen C.T. (1970). Introduction to Linear System Theory, Holt, Rinehart and Winston Inc, New York.
[7] Chen G. and D.L. Russel (1982). A mathematical model for linear elastic systems with structural damping, Quarterly of Applied Mathematics 39: 433-454.
[8] Chen G. and R. Triaggani (1990). Gevrey class semigroup arising from elastic systems with gentle dissipation: The case 0 α 1/2, Proceedings of the American Mathematical Society 100(2): 401-415.
[9] Coleman M.P. and H. Wang (1993). Analysis of vibration spectrum of a Timoshenko beam with boundary damping by them wave method, Wave Motion 17: 223-239.
[10] Curtain R. and H. Zwart (1995). An Introduction to Infinite-Dimensional Systems Theory, Springer-Verlag, New York.
[11] Davison E.J. and S.H. Wang (1975). New results on the controllability and observability of general composite systems, IEEE Transactions on Automatic Control 20: 123-128.
[12] Dunford N. and J. Schwartz (1963). Linear Operators. Vols. 1 and 2, Interscience, New York.
[13] Fattorini H.O. (1966). Some remarks on complete controllability, SIAM Journal on Control and Optimization 4: 686-694.
[14] Fattorini H.O. (1967). On complete controllability of linear systems, Journal of Differential Equations 3: 391-402.
[15] Fattorini H.O. and Russel D.L. (1971). Exact controllability theorem for linear parabolic equations in one space dimension, Archive for Rational Mechanics and Analysis 43: 272-292.
[16] Górecki H. (1986). Optimization of Dynamic Systems, WNT, Warsaw (in Polish).
[17] Huang F. (1988). On the mathematical model with analytic damping, SIAM Journal on Control Optimization 26(3): 714-724.
[18] Ito K. and N. Kunimatsu (1988). Stabilization of non-linear distribuded parameter vibratory system, International Journal of Control 48:(2) 2389-2415.
[19] Ito K. and N. Kunimatsu (1991). Semigroup model of structurally damped Timoshenko beam with boundary input, International Journal of Control 54: 367-391.
[20] Kalman R.E. (1960). On the general theory of control systems, Proceedings of the 1st IFAC Congress, London, pp. 481-493.
[21] Kim J.U. and Y. Renardy (1987). Boundary control of the Timoshenko beam, SIAM Journal on Control and Optimization 25: 1417-1429.
[22] Kaczorek T. (1998). Vectors and Matrices in Automatic Control and Electrical Engineering, WNT Warsaw (in Polish).
[23] Klamka J. (2000). Schauder's fixed point theorem in nonlinear controllability problems, Control Cybernetics 29: 1377-1393.
[24] Klamka J. (2002). Constrained exact controllability of semilinear systems, Systems and Control Letters 47(2): 139-147.
[25] Klamka J. (1992). Approximate controllability of second order dynamical systems, Applied Mathematics and Computer Sciences 2: 135-148.
[26] Klamka J. (1991). Controllability of Dynamical Systems, Kluwer, Dordrecht.
[27] Klamka J. (1976). Controllability of linear systems with timevariable delays in control, International Journal of Control 24: 869-878.
[28] Klamka J. (1977). Absolute controllability of linear systems with time-variable delays in control, International Journal of Control 26: 57-63.
[29] Labbe S. and E. Trelat (2006). Uniform controllability of semidiscrete approximations of parabolic control systems, Systems and Control Letters 55 (7): 597-609.
[30] Mahmudov N.I. and S. Zorlu (2005). Controllability of semilinear stochastic systems, International Journal of Control 78(13): 997-1004.
[31] Miller L. (2006). Non-structural controllability of linear elastic systems with structural damping, Journal of Functional Analysis 236(2): 592-608.
[32] Respondek J. (2005a). Controllability of dynamical systems with constraints, Systems and Control Letters 54(4): 293-314.
[33] Respondek J. (2005b). Numerical approach to the non-linear diofantic equations with applications to the controllability of infinite dimensional dynamical systems, International Journal of Control 78(13/10): 1017-1030.
[34] Respondek J. (2007). Numerical analysis of controllability of diffusive-convective system with limited manipulating variables, International Communications in Heat and Mass Transfer 34(8): 934-944.
[35] Sakawa Y. (1974). Controllability for partial differential equations of parabolic type, SIAM Journal on Control and Optimization 12: 389-400.
[36] Sakawa Y. (1984). Feedback control of second order evolution equations with damping, SIAM Journal Control and Optimization 22: 343-361.
[37] Sakawa Y. (1983). Feedback stabilization of linear diffusion system, SIAM Journal on Control an Optimization 21(5): 667-675.
[38] Shi D.H., S.H. Hou and D. Feng (1998). Feedback stabilization of a Timoshenko beam with an end mass, International Journal of Control 69(2): 285-300.
[39] Shi D.H., D. Feng and Q. Yan (2001). Feedback stabilization of rotating Timoshenko beam with adaptive gain, International Journal of Control 74(3): 239-251.
[40] Shubov M.A. (1999). Spectral operators generated by Timoshenko beam model, Systems and Control Letters 38: 249-258.
[41] Shubov M.A. (2000). Exact controllability of damped Timoshenko beam, IMA Journal of Mathematical Control and Information 17: 375-395.
[42] Schmitendorf W.E. and B.R. Barmish (1980). Null controllability of linear system with constrained controls, SIAM Journal on Control and Optimization 18: 327-345.
[43] Tanabe H. (1979). Equations of Evolution, Pitman, London.
[44] Triggiani R. (1975). Controllability and observability in Banach space with bounded operators, SIAM Journal on Control and Optimization 13: 462-491.
[45] Triggiani R. (1976). Extensions of rank conditions for controllability and observability to Banach spaces with unbounded operators, SIAM Journal on Control and Optimization 14: 313-338.
[46] Triggiani R. (1978). On the relationship between first and second order controllable systems in Banach spaces, SIAM Journal Control and Optimization 16: 847-859.
[47] Vieru A. (2005). On null controllability of linear systems in Banach spaces, Systems and Control Letters 54(4): 331-337.
[48] Xu G.Q. (2005). Boundary feedback exponential stabilization of a Timoshenko beam with both ends free, International Journal of Control 78(4/10): 286-297.