Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_4_a7, author = {Or{\l}owski, P.}, title = {Estimation of the output deviation norm for uncertain, discrete-time nonlinear systems in a state dependent form}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {505--513}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a7/} }
TY - JOUR AU - Orłowski, P. TI - Estimation of the output deviation norm for uncertain, discrete-time nonlinear systems in a state dependent form JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 505 EP - 513 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a7/ LA - en ID - IJAMCS_2007_17_4_a7 ER -
%0 Journal Article %A Orłowski, P. %T Estimation of the output deviation norm for uncertain, discrete-time nonlinear systems in a state dependent form %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 505-513 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a7/ %G en %F IJAMCS_2007_17_4_a7
Orłowski, P. Estimation of the output deviation norm for uncertain, discrete-time nonlinear systems in a state dependent form. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 4, pp. 505-513. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a7/
[1] Albertini F., Sontag E.D. (1994): Further results on controllability properties of discrete-time nonlinear systems. Dynamics and Control, Vol. 4, No. 3, pp. 235-253.
[2] Basar T. and Bernhard P. (1995): H[∞]-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach, 2nd Ed., Boston: Birkhäuser.
[3] Bacic M., Cannon M., Kouvaritakis B. (2003): Constrained NMPC via state-space partitioning for input affine nonlinear systems. International Journal of Control. Vol. 76, No. 15, pp. 1516-1526.
[4] Dai J., Mao J., (2002): Robust flight controller design for helicopters based on genetic algorithms, Proceedings of the 15th IFAC World Congress, Barcelona 2002, (on CDROM)
[5] Dutka, A., Ordys A. (2004): The optimal nonlinear generalised predictive control by the time-varying approximation. Proceeding of the Conference Methods and Model in Automation and Robotics, Mi˛edzyzdroje, Poland, pp. 299-304.
[6] Grancharova A., Johansen T., Tondel P. (2005): Computational aspects of approximate explicit nonlinear model predictive control. In: Lecture Notes in Control and Information Sciences vol. 358/2007: Assessment and Future Directions of Nonlinear Model Predictive Control, Springer Berlin/Heidelberg, pp. 181-192.
[7] Impram S. T., Munro N. (2001): Describing functions in nonlinear systems with structured and unstructured uncertainties. International Journal of Control. Vol. 74, No. 6, pp. 600-608.
[8] Kouvaritakis B., Cannon M., Rossiter J. A. (1999): Nonlinear model based predictive control, International Journal of Control, Vol. 72, No. 10, pp. 919-928.
[9] Lee Y. I., Kouvaritakis B., Cannon M. (2002): Constrained receding horizon predictive control for nonlinear systems, Automatica, Vol. 38, No. 12, pp. 2093-2102.
[10] Lewis F. L. (1986): Optimal Control. John Wiley Sons, New York.
[11] Ordys A. W., and Clarke D. W. (1993): A state-space description for GPC controllers. International Journal of Systems Science, Vol. 24, No. 9, pp. 1727-1744.
[12] Orłowski P. (2001): Applications of discrete evolution operators in time-varying systems. Proceedings of the European Control Conference, Porto, Portugal, pp. 3259-3264.
[13] Orłowski, P. (2003): Robust control design for a class of nonlinear systems. Proceedings of the Process Control PC'03 Conference, Strbske Pleso, Slovakia, CD-ROM.
[14] Orłowski P. (2004): Selected problems of frequency analysis for time-varying discrete-time systems using singular value decomposition and discrete Fourier transform. Journal of Sound and Vibration, Vol. 278, No. 4-5, pp. 903-921.
[15] Orłowski P. (2006): Methods for stability evaluation for linear time varying, discrete-time systems on finite time horizon. International Journal of Control, Vol. 79, No. 3, pp. 249-262.
[16] Postlethwaite I.,. Tsai M.C and Gu D.W. (1990): Weighting function selection in Hinf design. Proceedings of the IFAC Word Congress, Tallinn, Estonia, pp. 104-109.
[17] Tang, K.S., Man K.F., and Gu D.W. (1996):Structured genetic algorithm for robust H1 control systems design, IEEE Transactions on Industrial Electronics, Vol. 43, No. 5, pp. 575-582.
[18] Whidborne, J. F., Postlethwaite I. and Gu D. W. (1994): Robust controller design using Hinf loop-shaping and the method of inequalities, IEEE Transactions on Control Systems Technology, Vol. 29, No. 4, pp. 455-461.
[19] Van der Schaft, A.J. (1992): L2-gain analysis of nonlinear systems and nonlinear state feedback H control, IEEE Transactions on Automatic Control, Vol. AC-37,No. 6, pp. 770-784.
[20] Yang C.D., Tai H.C., and Lee C. C. (1997): Experimental approach to selecting Hinf weighting functions for DC servos. Journal of Dynamic Systems, Measurement and Control, Vol. 119, No. 1, pp. 101-105.
[21] Zhou, K., Doyle, J.C., and Glover, K. (1996): Robust and Optimal Control, Englewood Cliffs, NJ: Prentice Hall.