Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_4_a5, author = {Shumsky, A.}, title = {Redundancy relations for fault diagnosis in nonlinear uncertain systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {477--489}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a5/} }
TY - JOUR AU - Shumsky, A. TI - Redundancy relations for fault diagnosis in nonlinear uncertain systems JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 477 EP - 489 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a5/ LA - en ID - IJAMCS_2007_17_4_a5 ER -
%0 Journal Article %A Shumsky, A. %T Redundancy relations for fault diagnosis in nonlinear uncertain systems %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 477-489 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a5/ %G en %F IJAMCS_2007_17_4_a5
Shumsky, A. Redundancy relations for fault diagnosis in nonlinear uncertain systems. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 4, pp. 477-489. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a5/
[1] Chow E. Y. and A.S. Willsky. (1984): Analytical redundancy and the design of robust failure detection systems. IEEE Transactions on Automatic Control, Vol. AC-29, No. 7, pp. 603-614.
[2] Comtet-Varga G., C. Christophe, V. Cocquempot and M. Staroswiecki. (1999): F.D.I. For the induction motor using elimination theory. Proceedings of the European Control Conference, Karlsruhe, Germany, (on CD-ROM)
[3] Cox D., Little J. and D. O'Shea. (1992): Ideals, Varieties and Algorithms. New York: Springer.
[4] De Persis C. and A. Isidori. (2001): A geometric approach to nonlinear fault detection and isolation. IEEE Transactions on Automatic Control, Vol. AC-46, No. 6, pp. 853-865.
[5] De Persis C. and A. Isidori. (2002): Fault detection filters. International Journal of Robust and Nonlinear Control, Vol. 12, No. 6, pp. 729-747.
[6] Ding X. and P.M. Frank. (1993): An adaptive observer-based fault detection scheme for nonlinear dynamic systems. Proceedings of the 12-th IFAC World Congress, Sydney, Australia, Vol. 8, pp. 307-310
[7] Diop S. (1991): Elimination in control theory. - Mathematics of Control, Signals, and Systems, Vol. 14, No. 1, pp. 459-474
[8] Frank P.M. (1990): Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy - A survey and some new results. Automatica, Vol. 26, No 3, pp. 459-474.
[9] Gertler J. and M.M. Kunwer. (1993): Optimal residual decoupling for robust fault diagnosis. Proceedings of the International Conference Tooldiag'93, Toulouse, France, pp. 436-452.
[10] Isermann R. (1984): Process fault detection based on modeling and estimation methods: A survey. Automatica, Vol. 20, No. 4, pp. 387-404.
[11] Isidori A. (1989): Nonlinear Control Systems. Berlin: Springer.
[12] Lou X.C., Willsky A.S. and G.L. Verghese. (1986): Optimally robust redundancy relations for failure detection in uncertain systems. Automatica, Vol. 22, No. 3, pp. 333-344.
[13] Massoumnia M. A. (1986): A geometric approach to the synthesis of failure detection filters. IEEE Transactions on Automatic Control, Vol. AC-31, No. 9, pp. 839-846.
[14] Massoumnia M. A., G. C. Verghese and A. S. Willsky. (1989): Failure detection and identification. IEEE Transactions on Automatic Control, Vol. AC-34, No. 3, pp. 316-323.
[15] Medvedev A. (1994): Parity space method: A continuous time approach. Proceedings of the American Control Conference, Baltimore, Vol. 1, pp. 662-665.
[16] Mironovskii L.A. (1980): Functional diagnosis of dynamic systems. Automation and Remote Control, Vol. 41, No. 8, pp. 1122-1143.
[17] Park J., G. Rizzoni and W.B. Ribbens. (1994): On the representation of sensor faults in fault detection filters. Automatica, Vol. 30, No. 11, pp. 1793-1795.
[18] Patton R. and S. Kangethe. (1989): Robust fault diagnosis using eigenstructure assignment of observers. In: Fault Diagnosis in Dynamic Systems. Theory and Application (Patton R.J., Frank P.M., Clark R.N. N.Y., Eds.), Englewood Cliffs: Prentice Hall, pp. 99-154.
[19] Pekpe, K.M., G. Mourot and J. Ragot. (2004): Subspace method for sensors fault detection and isolation - application to grinding circuit monitoring. Proceedings of the 11th IFAC Symposium on Automation in Mining, Mineral and Metal Processing, Nancy, France.
[20] Ritt J.F. (1950): Differential Algebra. New York, American Math. Society.
[21] Seliger R. and P.M. Frank. (1991): Robust component fault detection and isolation in nonlinear dynamic systems using nonlinear unknown input observers. Proceedings of the IFAC Symposium SAFEPROCESS'91, Baden-Baden, Germany, pp. 313-318.
[22] Shumsky, A.Ye. (1991): Fault isolation in nonlinear systems via functional diagnosis. Automation and Remote Control, Vol. 52, No. 12, pp. 1759-1765.
[23] Shumsky, A.Ye. (1992): Diagnosis of parametric errors in dynamic objects by the hypothesizes testing method. Avtomatika i telemehanika, Vol. 53, No. 10, pp. 171-177 (in Russian).
[24] Shumsky, A.Ye. (2002): Robust analytical redundancy relations for fault diagnosis in nonlinear systems. Asian Journal of Control, Vol. 4, No 2, pp. 159-170.
[25] Shumsky, A. Ye. and A. N. Zhirabok. (2006): Nonlinear diagnostic filter design: Algebraic and geometric points of view. International Journal of Applied Mathematics and Computer Science, Vol. 16, No. 1, pp. 115-127.
[26] Shumsky, A. Ye. (2006): Fault diagnosis of sensors in autonomous underwater vehicle: Adaptive quasi-linear parity relations method. Proceedings of the International Symposium SAFEPROCESS, Beijing, PR China, pp. 415-520.