Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_4_a4, author = {Kaczorek, T.}, title = {The choice of the forms of {Lyapunov} functions for a positive {2D} {Roesser} model}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {471--475}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a4/} }
TY - JOUR AU - Kaczorek, T. TI - The choice of the forms of Lyapunov functions for a positive 2D Roesser model JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 471 EP - 475 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a4/ LA - en ID - IJAMCS_2007_17_4_a4 ER -
%0 Journal Article %A Kaczorek, T. %T The choice of the forms of Lyapunov functions for a positive 2D Roesser model %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 471-475 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a4/ %G en %F IJAMCS_2007_17_4_a4
Kaczorek, T. The choice of the forms of Lyapunov functions for a positive 2D Roesser model. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 4, pp. 471-475. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a4/
[1] Benvenuti L. and Farina L. (2004): A tutorial on the positive realization problem. IEEE Transactions on Automatic Control, Vol. 49, No. 5, pp. 651-664.
[2] Bose N. K. (1985): Multidimensional Systems Theory Progress, Directions and Open Problems, Dordrecht: D. Reidel Publishing Co.
[3] Farina L. and Rinaldi S. (2000): Positive Linear Systems. Theory and Applications. New York: Wiley.
[4] Fornasini E. and Marchesini G. (1978): Double indexed dynamical systems. Mathematical Systems Theory, Vol. 12, pp. 59-72.
[5] Fornasini E. and Marchesini G. (1976): State-space realization theory of two- dimensional filters. IEEE Transactions on Automatic Control, Vol. AC-21, pp. 484-491.
[6] Fornasini E. and Valcher M.E. (1996): On the spectral and combinatorial structure of 2D positive systems. Linear Algebra and Its Applications, Vol. 245, pp. 223-258.
[7] Fornasini E. and Valcher M.E. (1997): Recent developments in 2D positive systems theory. International Journal of Applied Mathematics and Computer Science, Vol. 7, No. 4, pp. 101-123.
[8] Gałkowski K. (1997): Elementary operation approach to state space realization of 2D systems. IEEE Transaction on Circuits and Systems, Vol. 44, No. 2, pp. 120-129.
[9] Kaczorek T. (1999): Externally positive 2D linear systems. Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol. 47, No. 3, pp. 227-234.
[10] Kaczorek T. (1996): Reachability and controllability of nonnegative 2D Roesser type models. Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol. 44, No. 4, pp. 405-410.
[11] Kaczorek T. (2000): Positive 1D and 2D Systems. London: Springer.
[12] Kaczorek T. (2002): When the equilibrium of positive 2D Roesser model are strictly positive. Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol. 50, No. 3, pp. 221-227.
[13] Kaczorek T. (1985): Two-Dimensional Linear Systems. Berlin: Springer.
[14] Klamka J. (1999): Controllability of 2D linear systems, In: Advances in Control Highlights of ECC 1999 (P.M. Frank, Ed.), Berlin: Springer, pp. 319-326.
[15] Klamka J. (1991): Controllability of dynamical systems. Dordrecht: Kluwer.
[16] Kurek J. (1985): The general state-space model for a twodimensional linear digital systems. IEEE Transactions on Automatic Control, Vol. -30, No. 2, pp. 600-602.
[17] Kurek J. (2002): Stability of positive 2D systems described by the Roesser model. IEEE Transactions on Circuits and Systems I, Vol. 49, No. 4, pp. 531-533.
[18] Roesser R.P. (1975) A discrete state-space model for linear image processing. IEEE Transactions on Automatic Control, Vol. AC-20, No. 1, pp. 1-10.
[19] Valcher M.E. and Fornasini E. (1995): State models and asymptotic behaviour of 2D Roesser model. IMA Journal on Mathematical Control and Information, No. 12, pp. 17-36.