The choice of the forms of Lyapunov functions for a positive 2D Roesser model
International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 4, pp. 471-475.

Voir la notice de l'article provenant de la source Library of Science

The appropriate choice of the forms of Lyapunov functions for a positive 2D Roesser model is addressed. It is shown that for the positive 2D Roesser model: (i) a linear form of the state vector can be chosen as a Lyapunov function, (ii) there exists a strictly positive diagonal matrix P such that the matrix ATPA-P is negative definite. The theoretical deliberations will be illustrated by numerical examples.
Keywords: Lyapunov function, positive 2D Roesser model, asymptotic analysis
Mots-clés : funkcja Lapunowa, model Roessera, stabilność asymptotyczna
@article{IJAMCS_2007_17_4_a4,
     author = {Kaczorek, T.},
     title = {The choice of the forms of {Lyapunov} functions for a positive {2D} {Roesser} model},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {471--475},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a4/}
}
TY  - JOUR
AU  - Kaczorek, T.
TI  - The choice of the forms of Lyapunov functions for a positive 2D Roesser model
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2007
SP  - 471
EP  - 475
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a4/
LA  - en
ID  - IJAMCS_2007_17_4_a4
ER  - 
%0 Journal Article
%A Kaczorek, T.
%T The choice of the forms of Lyapunov functions for a positive 2D Roesser model
%J International Journal of Applied Mathematics and Computer Science
%D 2007
%P 471-475
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a4/
%G en
%F IJAMCS_2007_17_4_a4
Kaczorek, T. The choice of the forms of Lyapunov functions for a positive 2D Roesser model. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 4, pp. 471-475. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a4/

[1] Benvenuti L. and Farina L. (2004): A tutorial on the positive realization problem. IEEE Transactions on Automatic Control, Vol. 49, No. 5, pp. 651-664.

[2] Bose N. K. (1985): Multidimensional Systems Theory Progress, Directions and Open Problems, Dordrecht: D. Reidel Publishing Co.

[3] Farina L. and Rinaldi S. (2000): Positive Linear Systems. Theory and Applications. New York: Wiley.

[4] Fornasini E. and Marchesini G. (1978): Double indexed dynamical systems. Mathematical Systems Theory, Vol. 12, pp. 59-72.

[5] Fornasini E. and Marchesini G. (1976): State-space realization theory of two- dimensional filters. IEEE Transactions on Automatic Control, Vol. AC-21, pp. 484-491.

[6] Fornasini E. and Valcher M.E. (1996): On the spectral and combinatorial structure of 2D positive systems. Linear Algebra and Its Applications, Vol. 245, pp. 223-258.

[7] Fornasini E. and Valcher M.E. (1997): Recent developments in 2D positive systems theory. International Journal of Applied Mathematics and Computer Science, Vol. 7, No. 4, pp. 101-123.

[8] Gałkowski K. (1997): Elementary operation approach to state space realization of 2D systems. IEEE Transaction on Circuits and Systems, Vol. 44, No. 2, pp. 120-129.

[9] Kaczorek T. (1999): Externally positive 2D linear systems. Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol. 47, No. 3, pp. 227-234.

[10] Kaczorek T. (1996): Reachability and controllability of nonnegative 2D Roesser type models. Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol. 44, No. 4, pp. 405-410.

[11] Kaczorek T. (2000): Positive 1D and 2D Systems. London: Springer.

[12] Kaczorek T. (2002): When the equilibrium of positive 2D Roesser model are strictly positive. Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol. 50, No. 3, pp. 221-227.

[13] Kaczorek T. (1985): Two-Dimensional Linear Systems. Berlin: Springer.

[14] Klamka J. (1999): Controllability of 2D linear systems, In: Advances in Control Highlights of ECC 1999 (P.M. Frank, Ed.), Berlin: Springer, pp. 319-326.

[15] Klamka J. (1991): Controllability of dynamical systems. Dordrecht: Kluwer.

[16] Kurek J. (1985): The general state-space model for a twodimensional linear digital systems. IEEE Transactions on Automatic Control, Vol. -30, No. 2, pp. 600-602.

[17] Kurek J. (2002): Stability of positive 2D systems described by the Roesser model. IEEE Transactions on Circuits and Systems I, Vol. 49, No. 4, pp. 531-533.

[18] Roesser R.P. (1975) A discrete state-space model for linear image processing. IEEE Transactions on Automatic Control, Vol. AC-20, No. 1, pp. 1-10.

[19] Valcher M.E. and Fornasini E. (1995): State models and asymptotic behaviour of 2D Roesser model. IMA Journal on Mathematical Control and Information, No. 12, pp. 17-36.