On the computation of the GCD of 2-D polynomials
International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 4, pp. 463-470

Voir la notice de l'article provenant de la source Library of Science

The main contribution of this work is to provide an algorithm for the computation of the GCD of 2-D polynomials, based on DFT techniques. The whole theory is implemented via illustrative examples.
Keywords: greatest common divisor, discrete Fourier transform, two-variable polynomial
Mots-clés : największy wspólny dzielnik, dyskretne przekształcenie Fouriera, wielomian dwuzmienny
@article{IJAMCS_2007_17_4_a3,
     author = {Tzekis, P. and Karampetakis, N. P. and Terzidis, H. K.},
     title = {On the computation of the {GCD} of {2-D} polynomials},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {463--470},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a3/}
}
TY  - JOUR
AU  - Tzekis, P.
AU  - Karampetakis, N. P.
AU  - Terzidis, H. K.
TI  - On the computation of the GCD of 2-D polynomials
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2007
SP  - 463
EP  - 470
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a3/
LA  - en
ID  - IJAMCS_2007_17_4_a3
ER  - 
%0 Journal Article
%A Tzekis, P.
%A Karampetakis, N. P.
%A Terzidis, H. K.
%T On the computation of the GCD of 2-D polynomials
%J International Journal of Applied Mathematics and Computer Science
%D 2007
%P 463-470
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a3/
%G en
%F IJAMCS_2007_17_4_a3
Tzekis, P.; Karampetakis, N. P.; Terzidis, H. K. On the computation of the GCD of 2-D polynomials. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 4, pp. 463-470. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a3/

[1] Karampetakis N. P., Tzekis P., (2005): On the computation of the minimal polynomial of a polynomial matrix. International Journal of Applied Mathematics and Computer Science, Vol. 15, No. 3, pp. 339-349.

[2] Karcanias N. and Mitrouli M., (2004): System theoretic based characterisation and computation of the least common multiple of a set of polynomials. Linear Algebra and Its Applications, Vol. 381, pp. 1-23.

[3] Karcanias N. and Mitrouli, M., (2000): Numerical computation of the least common multiple of a set of polynomials, Reliable Computing, Vol. 6, No. 4, pp. 439-457.

[4] Karcanias N. and Mitrouli M., (1994): A matrix pencil based numerical method for the computation of the GCD of polynomials. IEEE Transactions on Automatic Control, Vol. 39, No. 5, pp. 977-981.

[5] Mitrouli M. and Karcanias N., (1993): Computation of the GCD of polynomials using Gaussian transformation and shifting. International Journal of Control, Vol. 58, No. 1, pp. 211-228.

[6] Noda M. and Sasaki T., (1991): Approximate GCD and its applications to ill-conditioned algebraic equations. Journal of Computer and Applied Mathematics Vol. 38, No. 1-3, pp. 335-351.

[7] Pace I. S. and Barnett S., (1973): Comparison of algorithms for calculation of GCD of polynomials. International Journal of Systems Science Vol. 4, No. 2, pp. 211-226.

[8] Paccagnella, L. E. and Pierobon, G. L., (1976): FFT calculation of a determinantal polynomial. IEEE Transactions on Automatic Control, Vol. 21, No. 3, pp. 401-402.

[9] Schuster, A. and Hippe, P., (1992): Inversion of polynomial matrices by interpolation. IEEE Transactions on Automatic Control, Vol. 37, No. 3, pp. 363-365.