Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_4_a3, author = {Tzekis, P. and Karampetakis, N. P. and Terzidis, H. K.}, title = {On the computation of the {GCD} of {2-D} polynomials}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {463--470}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a3/} }
TY - JOUR AU - Tzekis, P. AU - Karampetakis, N. P. AU - Terzidis, H. K. TI - On the computation of the GCD of 2-D polynomials JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 463 EP - 470 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a3/ LA - en ID - IJAMCS_2007_17_4_a3 ER -
%0 Journal Article %A Tzekis, P. %A Karampetakis, N. P. %A Terzidis, H. K. %T On the computation of the GCD of 2-D polynomials %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 463-470 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a3/ %G en %F IJAMCS_2007_17_4_a3
Tzekis, P.; Karampetakis, N. P.; Terzidis, H. K. On the computation of the GCD of 2-D polynomials. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 4, pp. 463-470. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a3/
[1] Karampetakis N. P., Tzekis P., (2005): On the computation of the minimal polynomial of a polynomial matrix. International Journal of Applied Mathematics and Computer Science, Vol. 15, No. 3, pp. 339-349.
[2] Karcanias N. and Mitrouli M., (2004): System theoretic based characterisation and computation of the least common multiple of a set of polynomials. Linear Algebra and Its Applications, Vol. 381, pp. 1-23.
[3] Karcanias N. and Mitrouli, M., (2000): Numerical computation of the least common multiple of a set of polynomials, Reliable Computing, Vol. 6, No. 4, pp. 439-457.
[4] Karcanias N. and Mitrouli M., (1994): A matrix pencil based numerical method for the computation of the GCD of polynomials. IEEE Transactions on Automatic Control, Vol. 39, No. 5, pp. 977-981.
[5] Mitrouli M. and Karcanias N., (1993): Computation of the GCD of polynomials using Gaussian transformation and shifting. International Journal of Control, Vol. 58, No. 1, pp. 211-228.
[6] Noda M. and Sasaki T., (1991): Approximate GCD and its applications to ill-conditioned algebraic equations. Journal of Computer and Applied Mathematics Vol. 38, No. 1-3, pp. 335-351.
[7] Pace I. S. and Barnett S., (1973): Comparison of algorithms for calculation of GCD of polynomials. International Journal of Systems Science Vol. 4, No. 2, pp. 211-226.
[8] Paccagnella, L. E. and Pierobon, G. L., (1976): FFT calculation of a determinantal polynomial. IEEE Transactions on Automatic Control, Vol. 21, No. 3, pp. 401-402.
[9] Schuster, A. and Hippe, P., (1992): Inversion of polynomial matrices by interpolation. IEEE Transactions on Automatic Control, Vol. 37, No. 3, pp. 363-365.