Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_4_a2, author = {Djouambi, A. and Charef, A. and Besan\c{c}on, A. V.}, title = {Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {455--462}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a2/} }
TY - JOUR AU - Djouambi, A. AU - Charef, A. AU - Besançon, A. V. TI - Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 455 EP - 462 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a2/ LA - en ID - IJAMCS_2007_17_4_a2 ER -
%0 Journal Article %A Djouambi, A. %A Charef, A. %A Besançon, A. V. %T Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 455-462 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a2/ %G en %F IJAMCS_2007_17_4_a2
Djouambi, A.; Charef, A.; Besançon, A. V. Optimal approximation, simulation and analog realization of the fundamental fractional order transfer function. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 4, pp. 455-462. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_4_a2/
[1] Aoun M., Malti R., Levron F and Oustaloup A. (2003): Numerical simulation of fractional systems. Proceedings of DETC'03 ASME 2003 Design Engineering Technical Conference and Computers and Information in Engineering Conference, Chicago, USA.
[2] Barbosa R.S., Machado T.J.A. and Silva M.F. (2006): Descritization of complex-order differintegrals. Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and its Applications, Porto, Portugal, pp. 340-345.
[3] Cole K.S. and Cole R.H. (1941): Dispersion and absorption in dielectrics, alternation current characterization. Journal of Chemical Physics Vol. 9, pp. 341-351.
[4] Charef A., Sun H.H., Tsao Y.Y. and Onaral B. (1992): Fractal system as represented by singularity function. IEEE Transactions on Automatic Control, Vol. 37, No. 9, pp. 1465-1470.
[5] Chen Y.Q. and Moore K.L. (2002): Discretization schemes for fractional-order differentiators and integrators. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 49, No. 3, pp. 363-367.
[6] Davidson D. and Cole R. (1950), Dielectric relaxation in glycerine. Journal of Chemical Physics, Vol. 18, pp. 1417-1418.
[7] Fuross R.M. and Kirkwood J.K. (1941): Electrical properties of solids VIII-Dipole moments in polyvinyl chloride biphenyl systems. Journal of the American Chemical Society, Vol. 63, pp. 385-394.
[8] Hartley T.T. and Lorenzo C.F. (1998): A solution of the fundamental linear fractional order differential equation. Technical Report No. TP-1998-208693, NASA, Ohio.
[9] Goldberger A.L., Bhargava V., West B.J. and Mandell A.J. (1985): On the mechanism of cardiac electrical stability. Biophysics Journal, Vol. 48, pp. 525-528.
[10] Ichise M., Nagayanagi Y and Kojima T. (1971): An analog simulation of non-integer order transfer functions for analysis of electrode processes. Journal of Electro-Analytical Chemistry, Vol. 33, pp. 253-265.
[11] Kuo, Benjamin C. (1995): Automatic Control Systems. Englewood Cliffs: Prentice-Hall.
[12] Manabe S. (1961): The non-integer integral and its application to control systems. ETJ of Japan, Vol. 6, Nos. 3-4, pp. 83-87.
[13] Miller K.S. and Ross B. (1993): An Introduction to the Fractional Calculus and Fractional Differential Equations. New-York: Wiley.
[14] Oustaloup A. (1983) : Systèmes Asservis Linéaires d'Ordre Fractionnaire: Théorie et Pratique. Paris: Masson.
[15] Oustaloup A. (1995) : La Dérivation Non Entière, Théorie, Synthèse et Application. Paris: Hermes.
[16] Poinot T. and Trigeassou J. C. (2004): Modelling and simulation of fractional systems. Proceedings of the 1st IFAC Workshop on Fractional Differentiation and its Application, Bordeaux, France, pp. 656-663.
[17] Podlubny I. (1994): Fractional-order systems and fractionalorder controllers. Technical Report No. UEF-03-94, Slovak Academy of Sciences, Košice Slovakia.
[18] Podlubny I. (1999): Fractional Differential Equations. San Diego: Academic Press.
[19] Petras I., Podlubny I., Vinagre M.,Dorcak L. and O'Learya P. (2002): Analogue Realization of Fractional Order Controllers.Fakulta Berg, Technical University of Košice, Slovakia.
[20] Sun H.H. and Onaral B. (1983): A unified approach to represent metal electrode polarization. IEEE Transactions on Biomedical Engineering, Vol. 30, pp. 399-406.
[21] Sun H.H., Charef A., Tsao Y.Y. and Onaral B. (1992): Analysis of polarization dynamics by singularity decomposition method. Annals of Biomedical Engineering, Vol. 20, pp. 321-335.
[22] Torvik P.J. and Bagley R.L. (1984): On the appearance of the fractional derivative in the behavior of real materials. Transactions of the ASME, Vol. 51, pp. 294-298.
[23] Vinagere B.M., Podlubny I., Hernandez A. and Feliu V. (2000): Some approximations of fractional order operators used in control theory and applications. Journal of Fractional Calculus and Applied Analysis, Vol. 3, No. 3, pp. 231-248.