Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_3_a9, author = {Abgrall, R. and Perrier, V.}, title = {On the numerical approximation of first-order {Hamilton-Jacobi} equations}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {403--412}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a9/} }
TY - JOUR AU - Abgrall, R. AU - Perrier, V. TI - On the numerical approximation of first-order Hamilton-Jacobi equations JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 403 EP - 412 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a9/ LA - en ID - IJAMCS_2007_17_3_a9 ER -
%0 Journal Article %A Abgrall, R. %A Perrier, V. %T On the numerical approximation of first-order Hamilton-Jacobi equations %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 403-412 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a9/ %G en %F IJAMCS_2007_17_3_a9
Abgrall, R.; Perrier, V. On the numerical approximation of first-order Hamilton-Jacobi equations. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 3, pp. 403-412. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a9/
[1] Abgrall R. (1996): Numerical Discretization of First Order Hamilton-Jacobi Equations on Triangular Meshes. Communications on Pure and Applied Mathematics, Vol. XLIX, No. 12, pp. 1339-1373.
[2] Abgrall R. (2004): Numerical discretization of boundary conditions for first order Hamilton Jacobi equations. SIAM Journal on Numerical Analyis, Vol. 41, No. 6, pp. 2233-2261.
[3] Abgrall R. (2007): Construction of simple, stable and convergent high order schemes for steady first order Hamilton Jacobi equations. (in revision).
[4] Abgrall R. and Perrier V. (2007): Error estimates for Hamilton-Jacobi equations with boundary conditions. (in preparation).
[5] Augoula S. and Abgrall R. (2000): High order numerical discretization for Hamilton-Jacobi equations on triangular meshes. Journal of Scientific Computing, Vol. 15, No. 2, pp. 197-229.
[6] Bardi M. and Evans L.C. (1984): On Hopf's formula for solutions of first order Hamilton-Jacobi equations. Nonlinear Analysis Theory: Methods and Applications, Vol. 8, No. 11, pp. 1373-1381.
[7] BardiM. and Osher S. (1991): The nonconvex multi-dimensional Riemann problem for Hamilton-Jacobi equations. SIAM Journal onMathematical Analysis, Vol. 22, No. 2, pp. 344-351.
[8] Barles G. (1994): Solutions de viscosité des équations de Hamilton-Jacobi. Paris: Springer.
[9] Barles G. and Souganidis P.E. (1991): Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Analysis, Vol. 4, No. 3, pp. 271-283.
[10] Crandall M.G. and Lions P.L. (1984): Two approximations of solutions of Hamilton-Jacobi equations. Mathematics of Computation, Vol. 43, No. 167, pp. 1-19.
[11] Deckelnick K. and Elliot C.M. (2004): Uniqueness and error analysis for Hamilton-Jacobi equations with discontinuities. Interfaces and Boundary, Vol. 6, No. 3, pp. 329-349.
[12] Hu C. and Shu C.W. (1999): A discontinuous Galerkin finite element method for Hamilton Jacobi equations. SIAMJournal on Scientific Computing, Vol. 21, No. 2, pp. 666-690.
[13] Li F. and Shu C.W. (2005): Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton-Jacobi equations. Applied Mathematics Letters, Vol. 18, No. 11, pp. 1204-1209.
[14] Lions P.-L. (1982): Generalized Solutions of Hamilton-Jacobi Equations. Boston: Pitman.
[15] Osher S. and Shu C.W. (1991): High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM Journal on Numerical Analysis, Vol. 28, No. 4, pp. 907-922.
[16] Qiu J. and Shu C.W. (2005): Hermite WENO schemes for Hamilton-Jacobi equations. Journal of Computational Physics, Vol. 204, No. 1, pp. 82-99.
[17] Zhang Y.T. and Shu C.W. (2003): High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM Journal on Scientific Computing, Vol. 24, No. 3, pp. 1005-1030.