Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_3_a8, author = {Gander, M. J. and Halpern, L. and Magoules, F. and Roux, F. X.}, title = {Analysis of patch substructuring methods}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {395--402}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a8/} }
TY - JOUR AU - Gander, M. J. AU - Halpern, L. AU - Magoules, F. AU - Roux, F. X. TI - Analysis of patch substructuring methods JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 395 EP - 402 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a8/ LA - en ID - IJAMCS_2007_17_3_a8 ER -
%0 Journal Article %A Gander, M. J. %A Halpern, L. %A Magoules, F. %A Roux, F. X. %T Analysis of patch substructuring methods %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 395-402 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a8/ %G en %F IJAMCS_2007_17_3_a8
Gander, M. J.; Halpern, L.; Magoules, F.; Roux, F. X. Analysis of patch substructuring methods. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 3, pp. 395-402. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a8/
[1] Chevalier P. and Nataf F. (1998): Symmetrized method with optimized second-order conditions for the Helmholtz equation. Contemporary Mathematics, Vol. 218, pp. 400-407.
[2] Gander M.J. (2006): Optimized Schwarz methods. SIAM Journal on Numerical Analysis, Vol. 44, No. 2, pp. 699-731.
[3] Japhet C. (1998): Optimized Krylov-Ventcell method. Application to convection-diffusion problems. Proceedings of the 9th International Conference Domain Decomposition Methods, Bergen, Norway, pp. 382-389.
[4] Le Tallec P. (1994): Domain decomposition methods in computational mechanics, In: Computational Mechanics Advances, (J. Tinsley Oden, Ed.). North-Holland, Amsterdam, Vol. 1, No. 2, pp. 121-220.
[5] Lions P.-L. (1988): On the Schwarz alternating method. I. Proceedings of the 1st International Symposium Domain Decomposition Methods for Partial Differential Equations, Philadelphia, PA: SIAM, pp. 1-42.
[6] Lions P.-L. (1990): On the Schwarz alternating method. III: A variant for nonoverlapping subdomains. Proceedings of the 3rd International Symposium Domain Decomposition Methods for Partial Differential Equations, Philadelphia, PA: SIAM, pp. 202-223.
[7] Magoulès F., Iványi P. and Topping B.H.V. (2004a): Nonoverlapping Schwarz methods with optimized transmission conditions for the Helmholtz equation. Computer Methods in Applied Mechanics and Engineering, Vol. 193, No. 45-47, pp. 4797-4818.
[8] Magoulès F., Roux F.-X. and Salmon S. (2004b): Optimal discrete transmission conditions for a non-overlapping domain decomposition method for the Helmholtz equation. SIAM Journal on Scientific Computing, Vol. 25, No. 5, pp. 1497-1515.
[9] Magoulès F., Roux F.-X. and Series L. (2005): Algebraic way to derive absorbing boundary conditions for the Helmholtz equation. Journal of Computational Acoustics, Vol. 13, No. 3, pp. 433-454.
[10] Magoulès F., Roux F.-X. and Series L. (2006): Algebraic approximation of Dirichlet-to-Neumann maps for the equations of linear elasticity. Computer Methods in Applied Mechanics and Engineering, Vol. 195, No. 29-32, pp. 3742-3759.
[11] Quarteroni A. and Valli A. (1999): Domain Decomposition Methods for Partial Differential Equations. Oxford: Oxford University Press.
[12] Saad Y. (1996): Iterative Methods for Linear Systems. Boston: PWS Publishing.
[13] Schwarz H. (1870): Über einen Grenzübergang durch alternierendes Verfahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, Vol. 15, pp. 272-286.
[14] Smith B., Bjorstad P. and Gropp W. (1996): Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge: Cambridge University Press.
[15] Toselli A. and Widlund O.B. (2004): Domain Decomposition Methods: Algorithms and Theory. Berlin: Springer.