Analysis of patch substructuring methods
International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 3, pp. 395-402.

Voir la notice de l'article provenant de la source Library of Science

Patch substructuring methods are non-overlapping domain decomposition methods like classical substructuring methods, but they use information from geometric patches reaching into neighboring subdomains, condensated on the interfaces, to enhance the performance of the method, while keeping it non-overlapping. These methods are very convenient to use in practice, but their convergence properties have not been studied yet. We analyze geometric patch substructuring methods for the special case of one patch per interface. We show that this method is equivalent to an overlapping Schwarz method using Neumann transmission conditions. This equivalence is obtained by first studying a new, algebraic patch method, which is equivalent to the classical Schwarz method with Dirichlet transmission conditions and an overlap corresponding to the size of the patches. Our results motivate a new method, the Robin patch method, which is a linear combination of the algebraic and the geometric one, and can be interpreted as an optimized Schwarz method with Robin transmission conditions. This new method has a significantly faster convergence rate than both the algebraic and the geometric one. We complement our results by numerical experiments.
Keywords: Schwarz domain decomposition methods, Schur complement methods, patch substructuring methods, optimized Schwarz methods
Mots-clés : metoda rozkładu, metoda dopełniacza Schura, zoptymalizowana metoda Schwarza
@article{IJAMCS_2007_17_3_a8,
     author = {Gander, M. J. and Halpern, L. and Magoules, F. and Roux, F. X.},
     title = {Analysis of patch substructuring methods},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {395--402},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a8/}
}
TY  - JOUR
AU  - Gander, M. J.
AU  - Halpern, L.
AU  - Magoules, F.
AU  - Roux, F. X.
TI  - Analysis of patch substructuring methods
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2007
SP  - 395
EP  - 402
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a8/
LA  - en
ID  - IJAMCS_2007_17_3_a8
ER  - 
%0 Journal Article
%A Gander, M. J.
%A Halpern, L.
%A Magoules, F.
%A Roux, F. X.
%T Analysis of patch substructuring methods
%J International Journal of Applied Mathematics and Computer Science
%D 2007
%P 395-402
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a8/
%G en
%F IJAMCS_2007_17_3_a8
Gander, M. J.; Halpern, L.; Magoules, F.; Roux, F. X. Analysis of patch substructuring methods. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 3, pp. 395-402. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a8/

[1] Chevalier P. and Nataf F. (1998): Symmetrized method with optimized second-order conditions for the Helmholtz equation. Contemporary Mathematics, Vol. 218, pp. 400-407.

[2] Gander M.J. (2006): Optimized Schwarz methods. SIAM Journal on Numerical Analysis, Vol. 44, No. 2, pp. 699-731.

[3] Japhet C. (1998): Optimized Krylov-Ventcell method. Application to convection-diffusion problems. Proceedings of the 9th International Conference Domain Decomposition Methods, Bergen, Norway, pp. 382-389.

[4] Le Tallec P. (1994): Domain decomposition methods in computational mechanics, In: Computational Mechanics Advances, (J. Tinsley Oden, Ed.). North-Holland, Amsterdam, Vol. 1, No. 2, pp. 121-220.

[5] Lions P.-L. (1988): On the Schwarz alternating method. I. Proceedings of the 1st International Symposium Domain Decomposition Methods for Partial Differential Equations, Philadelphia, PA: SIAM, pp. 1-42.

[6] Lions P.-L. (1990): On the Schwarz alternating method. III: A variant for nonoverlapping subdomains. Proceedings of the 3rd International Symposium Domain Decomposition Methods for Partial Differential Equations, Philadelphia, PA: SIAM, pp. 202-223.

[7] Magoulès F., Iványi P. and Topping B.H.V. (2004a): Nonoverlapping Schwarz methods with optimized transmission conditions for the Helmholtz equation. Computer Methods in Applied Mechanics and Engineering, Vol. 193, No. 45-47, pp. 4797-4818.

[8] Magoulès F., Roux F.-X. and Salmon S. (2004b): Optimal discrete transmission conditions for a non-overlapping domain decomposition method for the Helmholtz equation. SIAM Journal on Scientific Computing, Vol. 25, No. 5, pp. 1497-1515.

[9] Magoulès F., Roux F.-X. and Series L. (2005): Algebraic way to derive absorbing boundary conditions for the Helmholtz equation. Journal of Computational Acoustics, Vol. 13, No. 3, pp. 433-454.

[10] Magoulès F., Roux F.-X. and Series L. (2006): Algebraic approximation of Dirichlet-to-Neumann maps for the equations of linear elasticity. Computer Methods in Applied Mechanics and Engineering, Vol. 195, No. 29-32, pp. 3742-3759.

[11] Quarteroni A. and Valli A. (1999): Domain Decomposition Methods for Partial Differential Equations. Oxford: Oxford University Press.

[12] Saad Y. (1996): Iterative Methods for Linear Systems. Boston: PWS Publishing.

[13] Schwarz H. (1870): Über einen Grenzübergang durch alternierendes Verfahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, Vol. 15, pp. 272-286.

[14] Smith B., Bjorstad P. and Gropp W. (1996): Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge: Cambridge University Press.

[15] Toselli A. and Widlund O.B. (2004): Domain Decomposition Methods: Algorithms and Theory. Berlin: Springer.