Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_3_a7, author = {Jund, S. and Salmon, S.}, title = {Arbitrary high-order finite element schemes and high-order mass lumping}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {375--393}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a7/} }
TY - JOUR AU - Jund, S. AU - Salmon, S. TI - Arbitrary high-order finite element schemes and high-order mass lumping JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 375 EP - 393 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a7/ LA - en ID - IJAMCS_2007_17_3_a7 ER -
%0 Journal Article %A Jund, S. %A Salmon, S. %T Arbitrary high-order finite element schemes and high-order mass lumping %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 375-393 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a7/ %G en %F IJAMCS_2007_17_3_a7
Jund, S.; Salmon, S. Arbitrary high-order finite element schemes and high-order mass lumping. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 3, pp. 375-393. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a7/
[1] Butcher J.C. (2003): Numerical Methods for Ordinary Differential Equations. Chichester: John Wiley and Sons.
[2] Chin-Joe-Kong M.J.S., Mulder W.A. and Van Veeldhuizen M. (1999): Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation. Journal of Engineering Mathematics Vol. 35, No. 4, pp. 405-426.
[3] Ciarlet P.G. (1978): The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam.
[4] Cohen G. (2002): Higher Order NumericalMethod for Transient Wave Equations. Berlin: Springer-Verlag.
[5] Cohen G., Joly P., Roberts J.E. and Tordjman N. (2001): Higher order triangular finite element with mass lumping for the wave equation. SIAM Journal on Numerical Analysis, Vol. 38, No. 6, pp. 2047-2078.
[6] Cohen G., Joly P. and Tordjman N.(1994): Higher-order finite elements with mass lumping for the 1D wave equation. Finite Elements in Analysis and Design, Vol. 16 , No. 3-4, pp. 329-336.
[7] Cohen G., Joly P. and Tordjman N. (1993): Construction and analysis of higher order finite elements with mass lumping for the wave equation, In: Proceedings of the Second International Conference on Mathematical and Numerical Aspects of Wave Propagation Phenomena, SIAM, Philadelphia, pp. 152-160.
[8] Dumbser M. (2005): Arbitrary High Order Schemes for the Solution of Hyperbolic Conservation Laws in Complex Domains. Ph.D. thesis, Stuttgart University.
[9] Fix G.J. (1972): Effect of quadrature errors in the finite element approximation of steady state, eigenvalue and parabolic problems, In: The Mathematical Foundations of the Finite Element Method with Applications to the Partial Differential Equations, (A.K. Aziz, Ed.), New York: Academic Press, pp. 525-556.
[10] Lax P.D. andWendroff B. (1960): Systems of conservation laws. Communications on Pure Applied Mathematics, Vol. 13, pp. 217-237.
[11] Mulder W.A. (1996): A comparison between higher-order finite elements and finite differences for solving the wave equation, In: Proceedings of the Second ECCOMAS Conference Numerical Methods in Engineering, (J.-A. Désidéri, P. Le Tallec, E. Oñate, J. Périaux and E. Stein, Eds.), Chichester: John Wiley and Sons, pp. 344-350.
[12] Tordjman N. (1995): Eléments finis d'ordre élevés avec condensation de masse pour l'équation des onde. Ph.D. Thesis,Université Paris IX Dauphine, Paris.
[13] Titarev V.A. and Toro E.F. (2002): ADER: Arbitrary high order Godunov approach. Journal of Scientific Computing, Vol. 17, No. 1-4, pp. 609-618.