Arbitrary high-order finite element schemes and high-order mass lumping
International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 3, pp. 375-393.

Voir la notice de l'article provenant de la source Library of Science

Computers are becoming sufficiently powerful to permit to numerically solve problems such as the wave equation with high-order methods. In this article we will consider Lagrange finite elements of order k and show how it is possible to automatically generate the mass and stiffness matrices of any order with the help of symbolic computation software. We compare two high-order time discretizations: an explicit one using a Taylor expansion in time (a Cauchy-Kowalewski procedure) and an implicit Runge-Kutta scheme. We also construct in a systematic way a high-order quadrature which is optimal in terms of the number of points, which enables the use of mass lumping, up to P5 elements. We compare computational time and effort for several codes which are of high order in time and space and study their respective properties.
Keywords: wave equation, finite element method, mass lumping, Cauchy-Kowalewski procedure
Mots-clés : równanie falowe, metoda elementów skończonych, twierdzenie Cauchy'ego-Kowalevskiego
@article{IJAMCS_2007_17_3_a7,
     author = {Jund, S. and Salmon, S.},
     title = {Arbitrary high-order finite element schemes and high-order mass lumping},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {375--393},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a7/}
}
TY  - JOUR
AU  - Jund, S.
AU  - Salmon, S.
TI  - Arbitrary high-order finite element schemes and high-order mass lumping
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2007
SP  - 375
EP  - 393
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a7/
LA  - en
ID  - IJAMCS_2007_17_3_a7
ER  - 
%0 Journal Article
%A Jund, S.
%A Salmon, S.
%T Arbitrary high-order finite element schemes and high-order mass lumping
%J International Journal of Applied Mathematics and Computer Science
%D 2007
%P 375-393
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a7/
%G en
%F IJAMCS_2007_17_3_a7
Jund, S.; Salmon, S. Arbitrary high-order finite element schemes and high-order mass lumping. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 3, pp. 375-393. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a7/

[1] Butcher J.C. (2003): Numerical Methods for Ordinary Differential Equations. Chichester: John Wiley and Sons.

[2] Chin-Joe-Kong M.J.S., Mulder W.A. and Van Veeldhuizen M. (1999): Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation. Journal of Engineering Mathematics Vol. 35, No. 4, pp. 405-426.

[3] Ciarlet P.G. (1978): The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam.

[4] Cohen G. (2002): Higher Order NumericalMethod for Transient Wave Equations. Berlin: Springer-Verlag.

[5] Cohen G., Joly P., Roberts J.E. and Tordjman N. (2001): Higher order triangular finite element with mass lumping for the wave equation. SIAM Journal on Numerical Analysis, Vol. 38, No. 6, pp. 2047-2078.

[6] Cohen G., Joly P. and Tordjman N.(1994): Higher-order finite elements with mass lumping for the 1D wave equation. Finite Elements in Analysis and Design, Vol. 16 , No. 3-4, pp. 329-336.

[7] Cohen G., Joly P. and Tordjman N. (1993): Construction and analysis of higher order finite elements with mass lumping for the wave equation, In: Proceedings of the Second International Conference on Mathematical and Numerical Aspects of Wave Propagation Phenomena, SIAM, Philadelphia, pp. 152-160.

[8] Dumbser M. (2005): Arbitrary High Order Schemes for the Solution of Hyperbolic Conservation Laws in Complex Domains. Ph.D. thesis, Stuttgart University.

[9] Fix G.J. (1972): Effect of quadrature errors in the finite element approximation of steady state, eigenvalue and parabolic problems, In: The Mathematical Foundations of the Finite Element Method with Applications to the Partial Differential Equations, (A.K. Aziz, Ed.), New York: Academic Press, pp. 525-556.

[10] Lax P.D. andWendroff B. (1960): Systems of conservation laws. Communications on Pure Applied Mathematics, Vol. 13, pp. 217-237.

[11] Mulder W.A. (1996): A comparison between higher-order finite elements and finite differences for solving the wave equation, In: Proceedings of the Second ECCOMAS Conference Numerical Methods in Engineering, (J.-A. Désidéri, P. Le Tallec, E. Oñate, J. Périaux and E. Stein, Eds.), Chichester: John Wiley and Sons, pp. 344-350.

[12] Tordjman N. (1995): Eléments finis d'ordre élevés avec condensation de masse pour l'équation des onde. Ph.D. Thesis,Université Paris IX Dauphine, Paris.

[13] Titarev V.A. and Toro E.F. (2002): ADER: Arbitrary high order Godunov approach. Journal of Scientific Computing, Vol. 17, No. 1-4, pp. 609-618.