Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_3_a10, author = {Fulma\'nski, P. and Laurain, A. and Scheid, J. F. and Soko{\l}owski, J.}, title = {A level set method in shape and topology optimization for variational inequalities}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {413--430}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a10/} }
TY - JOUR AU - Fulmański, P. AU - Laurain, A. AU - Scheid, J. F. AU - Sokołowski, J. TI - A level set method in shape and topology optimization for variational inequalities JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 413 EP - 430 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a10/ LA - en ID - IJAMCS_2007_17_3_a10 ER -
%0 Journal Article %A Fulmański, P. %A Laurain, A. %A Scheid, J. F. %A Sokołowski, J. %T A level set method in shape and topology optimization for variational inequalities %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 413-430 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a10/ %G en %F IJAMCS_2007_17_3_a10
Fulmański, P.; Laurain, A.; Scheid, J. F.; Sokołowski, J. A level set method in shape and topology optimization for variational inequalities. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 3, pp. 413-430. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a10/
[1] Allaire G., De Gournay F., Jouve F. and Toader A.M. (2005): Structural optimization using topological and shape sensitivity via a level set method. Control and Cybernetics, Vol. 34, No. 1, pp. 59-80.
[2] Amstutz S. and Andrä H. (2006): A new algorithm for topology optimization using a level-set method. - Journal of Computer Physics, Vol. 216, No. 2, pp. 573-588.
[3] Delfour M.C. and Zolesio J.-P. (2001): Shapes and Geometries. Philadelphia, PA: SIAM.
[4] Henrot A. and Pierre M. (2005): Variation et optimisation de formes: Une analyse géométrique. Berlin: Springer.
[5] Jackowska L., Sokołowski J., ˙Zochowski A. and Henrot A. (2002): On numerical solution of shape inverse problems. - Computational Optimization and Applications, Vol. 23, No. 2, pp. 231-255.
[6] Jackowska A.L., Sokołowski J. and ˙Zochowski A. (2003): Topological optimization and inverse problems. Computer Assisted Mechanics and Engineering Sciences, Vol. 10, No. 2, pp. 163-176.
[7] Jarusek J., Krbec M., Rao M. and Sokołowski J. (2003): Conical differentiability for evolution variational inequalities. Journal of Differential Equations, Vol. 193, No. 1, pp. 131-146.
[8] Laurain A. (2006): Singularly perturbed domains in shape optimization. - Ph.D. thesis, Université de Nancy.
[9] Masmoudi M. (2002): The topological asymptotic, In: Computational Methods for Control Applications (R. Glowinski, H. Kawarada and J. Periaux, Eds.). GAKUTO Int. Ser. Math. Sci. Appl., Vol. 16, pp. 53-72.
[10] Maz'ya V., Nazarov S.A. and Plamenevskij B. (2000): Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vols. 1 and 2, Basel: Birkhäuser, p. 435.
[11] Nazarov S.A. (1999): Asymptotic conditions at a point, self adjoint extensions of operators, and the method of matched asymptotic expansions. American Mathematical Society Translations, Vol. 198, No. 2, pp. 77-125.
[12] Nazarov S.A. and Sokołowski J. (2003a): Self adjoint extensions of differential operators in application to shape optimization. Comptes Rendus Mécanique, Vol. 331, No. 10, pp. 667-672.
[13] Nazarov S.A. and Sokołowski J. (2003b): Asymptotic analysis of shape functionals. Journal de Mathématiques pures et appliquées, Vol. 82, No. 2, pp. 125-196.
[14] Nazarov S.A. and Sokołowski J. (2004a): Self adjoint extensions for elasticity system in application to shape optimization. Bulletin of the Polish Academy of Sciences, Mathematics, Vol. 52, No. 3, pp. 237-248.
[15] Nazarov S.A. and Sokołowski J. (2004b): The topological derivative of the Dirichlet integral due to formation of a thin ligament. Siberian Mathematical Journal, Vol. 45, No. 2, pp. 341-355.
[16] Nazarov S.A., Slutskij A.S. and Sokołowski J. (2005): Topological derivative of the energy functional due to formation of a thin ligament on a spatial body. Folia Mathematicae, Acta Universitatis Lodziensis, Vol. 12, pp. 39-72.
[17] Osher S. and Fedkiw R. (2004): Level Set Methods and Dynamic Implicit Surfaces. New York: Springer.
[18] Osher S. and Sethian J. (1988): Fronts propagating with curvature-dependant speed: Algorithms based on Hamilton-Jacobi formulation. Journal of Computational Physics, Vol. 79, No. 1, pp. 12-49.
[19] Peng D., Merriman B., Osher S., Zhao S. and Kang M. (1999): A PDE-based fast local level set method. Journal of Computational Physics, Vol. 155, No. 2, pp. 410-438.
[20] Rao M. and Sokołowski J. (2000): Tangent sets in Banach spaces and applications to variational inequalities. Les prépublications de l'Institut Élie Cartan, No. 42.
[21] Sethian J. (1996): Level Set Methods. Cambridge: Cambridge University Press.
[22] Sokołowski J. and Zolesio J.-P. (1992): Introduction to shape optimization. Series in Computationnal Mathematics, Berlin: Springer Verlag, Vol. 16.
[23] Sokołowski J. and ˙Zochowski A. (1999): On the topological derivative in shape optimization. SIAMJournal on Control and Optimization, Vol. 37, No. 4, pp. 1251-1272.
[24] Sokołowski J. and ˙Zochowski A. (2001): Topological derivatives of shape functionals for elasticity systems. Mechanics of Structures and Machines, Vol. 29, No. 3, pp. 333-351.
[25] Sokołowski J. and ˙Zochowski A. (2003): Optimality conditions for simultaneous topology and shape optimization. SIAMJournal on Control and Optimization, Vol. 42, No. 4, pp. 1198-1221.
[26] Sokołowski J. and ˙Zochowski A. (2005a): Topological derivatives for contact problems. Numerische Mathematik, Vol. 102, No. 1, pp. 145-179.
[27] Sokołowski J. and ˙Zochowski A. (2005b): Topological derivatives for obstacle problems. Les prépublications de l'Institut Élie Cartan No. 12.
[28] Watson G.N. (1944): Theory of Bessel Functions. Cambridge: The University Press.
[29] Zhao H.K., Chan T., Merriman B. and Osher S. (1996): A variational level set approach to multi-phase motion. Journal of Computational Physics, Vol. 127, No. 1, pp. 179-195.