Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_3_a1, author = {Audusse, E. and Bristeau, M. O.}, title = {Finite-volume solvers for a multilayer {Saint-Venant} system}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {311--320}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a1/} }
TY - JOUR AU - Audusse, E. AU - Bristeau, M. O. TI - Finite-volume solvers for a multilayer Saint-Venant system JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 311 EP - 320 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a1/ LA - en ID - IJAMCS_2007_17_3_a1 ER -
%0 Journal Article %A Audusse, E. %A Bristeau, M. O. %T Finite-volume solvers for a multilayer Saint-Venant system %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 311-320 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a1/ %G en %F IJAMCS_2007_17_3_a1
Audusse, E.; Bristeau, M. O. Finite-volume solvers for a multilayer Saint-Venant system. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 3, pp. 311-320. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a1/
[1] Audusse E. (2005): A multilayer Saint-Venant model. Discrete and Continuous Dynamical Systems, Series B, Vol. 5, No. 2, pp. 189-214.
[2] Audusse E. and Bristeau M.O. (2005): A well-balanced positivity preserving second order scheme for shallow water flows on unstructured meshes. Journal of Computational Physics, Vol. 206, pp. 311-333.
[3] Audusse E., Bristeau M.O. and Decoene A. (2006a): 3D free surface flows simulations using a multilayer Saint-Venant model - Comparisons with Navier-Stokes solutions. Proceedings of the 6-th European Conference Numerical Mathematics and Advanced Applications, ENUMATH 2005, Santiago de Compostella, Spain, pp. 181-189.
[4] Audusse E., Klein R. and Owinoh A. (2006b): Conservative and well-balanced discretizations for shallow water flows on rotational domains. Proceedings of the 77th Annual Scientific Conference Gesellschaft für Angewandte Mathematik und Mechanik, GAMM 2006, Berlin, Germany.
[5] Audusse E., Bristeau M.O. and Decoene A. (2007): Numerical simulations of 3D free surface flows by a multilayer Saint-Venant model. (submitted).
[6] Bermudez A. and Vazquez M.E. (1994): Upwind methods for hyperbolic conservation laws with source terms. Computers and Fluids, Vol. 23, No. 8, pp. 1049-1071.
[7] Benkhaldoun F., Elmahi I. and Monthe L.A. (1999): Positivity preserving finite volume Roe schemes for transportdiffusion equations. Computer Methods in Applied Mechanics and Engineering, Vol. 178, pp. 215-232.
[8] Bouchut F. (2002): An introduction to finite volume methods for hyperbolic systems of conservation laws with source. Ecole CEA - EDF - INRIA Ecoulements peu profonds à surface libre, Octobre 2002, INRIA Rocquencourt, http://www.dma.ens.fr/˜fbouchut/publications/fvcours.ps.gz
[9] Bouchut F., Le Sommer J. and Zeitlin V. (2004): Frontal geostrophic adjustment and nonlinear wave phenomena in one dimensional rotating shallow water. Part 2: Highresolution numerical simulations. Journal of Fluid Mechanics, Vol. 513, pp. 35-63.
[10] Bristeau M.O. and Coussin B. (2001): Boundary Conditions for the Shallow Water Equations solved by Kinetic Schemes. INRIA Report, Vol. 4282, http://www.inria.fr/RRRT/RR-4282.html
[11] Castro M., Macias J. and Pares C. (2001): A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 35, pp. 107-127.
[12] Einfeldt B., Munz C.D., Roe P.L. and Slogreen B. (1991): On Godunov type methods for near low densities. Journal of Computational Physics, Vol. 92, pp. 273-295.
[13] Ferrari S. and Saleri F. (2004): A new two-dimensional Shallow Water model including pressure effects and slow varying bottom topography. ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 38, No. 2, pp. 211-234.
[14] George D. (2004): Numerical Approximation of the Nonlinear Shallow Water Equations with Topography and Dry Beds: A Godunov-Type Scheme. M.Sc. Thesis, University of Washington.
[15] Gerbeau J.-F. and Perthame B. (2001): Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation. Discrete and Continuous Dynamical Systems, Ser. B, Vol. 1, No. 1, pp. 89-102.
[16] Godlewski E. and Raviart P.-A. (1996): Numerical Approximation of Hyperbolic Systems of Conservation Laws. New York: Springer-Verlag.
[17] Godunov S.K. (1959): A difference method for numerical calculation of discontinuous equations of hydrodynamics. Matematicheski Sbornik, pp. 271-300, (in Russian).
[18] Harten A., Lax P.D. and Van Leer B. (1983): On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, Vol. 25, pp. 35-61.
[19] Hervouet J.M. (2003): Hydrodynamique des écoulements à surface libre; Modélisation numérique avec la méthode des éléments finis. Paris: Presses des Ponts et Chaussées, (in French).
[20] Khobalatte B. (1993): Résolution numérique des équations de la mécanique des fluides par des méthides cinétiques. Ph.D. Thesis, Université P. M. Curie (Paris 6), (in French).
[21] LeVeque R.J. (1992): Numerical Methods for Conservation Laws. Basel: Birkhäuser.
[22] Lions P.L., Perthame B. and Souganidis P.E. (1996): Existence of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Communications on Pure and Applied Mathematics, Vol. 49, No. 6, pp. 599-638.
[23] Perthame B. (2002): Kinetic Formulations of Conservation Laws. Oxford: Oxford University Press.
[24] Perthame B. and Simeoni C. (2001): A kinetic scheme for the Saint-Venant system with a source term. Calcolo, Vol. 38, No. 4, pp. 201-231.
[25] Roe P.L. (1981): Approximate Riemann solvers, parameter vectors and difference schemes. Journal of Computational Physics, Vol. 43, pp. 357-372.
[26] de Saint-Venant A.J.C. (1971): Théorie du mouvement nonpermanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit (in French). Comptes Rendus de l'Académie des Sciences, Paris, Vol. 73, pp. 147-154.