Finite-volume solvers for a multilayer Saint-Venant system
International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 3, pp. 311-320.

Voir la notice de l'article provenant de la source Library of Science

We consider the numerical investigation of two hyperbolic shallow water models. We focus on the treatment of the hyperbolic part. We first recall some efficient finite volume solvers for the classical Saint-Venant system. Then we study their extensions to a new multilayer Saint-Venant system. Finally, we use a kinetic solver to perform some numerical tests which prove that the 2D multilayer Saint-Venant system is a relevant alternative to 3D hydrostatic Navier-Stokes equations.
Keywords: Saint-Venant system, shallow water equations, finite volumes, kinetic solver, approximate Riemann solvers, multilayer model
Mots-clés : równanie Saint-Venanta, równanie płytkiej wody, wolumen skończony, problem Riemanna, model wielowarstwowy
@article{IJAMCS_2007_17_3_a1,
     author = {Audusse, E. and Bristeau, M. O.},
     title = {Finite-volume solvers for a multilayer {Saint-Venant} system},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {311--320},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a1/}
}
TY  - JOUR
AU  - Audusse, E.
AU  - Bristeau, M. O.
TI  - Finite-volume solvers for a multilayer Saint-Venant system
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2007
SP  - 311
EP  - 320
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a1/
LA  - en
ID  - IJAMCS_2007_17_3_a1
ER  - 
%0 Journal Article
%A Audusse, E.
%A Bristeau, M. O.
%T Finite-volume solvers for a multilayer Saint-Venant system
%J International Journal of Applied Mathematics and Computer Science
%D 2007
%P 311-320
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a1/
%G en
%F IJAMCS_2007_17_3_a1
Audusse, E.; Bristeau, M. O. Finite-volume solvers for a multilayer Saint-Venant system. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 3, pp. 311-320. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a1/

[1] Audusse E. (2005): A multilayer Saint-Venant model. Discrete and Continuous Dynamical Systems, Series B, Vol. 5, No. 2, pp. 189-214.

[2] Audusse E. and Bristeau M.O. (2005): A well-balanced positivity preserving second order scheme for shallow water flows on unstructured meshes. Journal of Computational Physics, Vol. 206, pp. 311-333.

[3] Audusse E., Bristeau M.O. and Decoene A. (2006a): 3D free surface flows simulations using a multilayer Saint-Venant model - Comparisons with Navier-Stokes solutions. Proceedings of the 6-th European Conference Numerical Mathematics and Advanced Applications, ENUMATH 2005, Santiago de Compostella, Spain, pp. 181-189.

[4] Audusse E., Klein R. and Owinoh A. (2006b): Conservative and well-balanced discretizations for shallow water flows on rotational domains. Proceedings of the 77th Annual Scientific Conference Gesellschaft für Angewandte Mathematik und Mechanik, GAMM 2006, Berlin, Germany.

[5] Audusse E., Bristeau M.O. and Decoene A. (2007): Numerical simulations of 3D free surface flows by a multilayer Saint-Venant model. (submitted).

[6] Bermudez A. and Vazquez M.E. (1994): Upwind methods for hyperbolic conservation laws with source terms. Computers and Fluids, Vol. 23, No. 8, pp. 1049-1071.

[7] Benkhaldoun F., Elmahi I. and Monthe L.A. (1999): Positivity preserving finite volume Roe schemes for transportdiffusion equations. Computer Methods in Applied Mechanics and Engineering, Vol. 178, pp. 215-232.

[8] Bouchut F. (2002): An introduction to finite volume methods for hyperbolic systems of conservation laws with source. Ecole CEA - EDF - INRIA Ecoulements peu profonds à surface libre, Octobre 2002, INRIA Rocquencourt, http://www.dma.ens.fr/˜fbouchut/publications/fvcours.ps.gz

[9] Bouchut F., Le Sommer J. and Zeitlin V. (2004): Frontal geostrophic adjustment and nonlinear wave phenomena in one dimensional rotating shallow water. Part 2: Highresolution numerical simulations. Journal of Fluid Mechanics, Vol. 513, pp. 35-63.

[10] Bristeau M.O. and Coussin B. (2001): Boundary Conditions for the Shallow Water Equations solved by Kinetic Schemes. INRIA Report, Vol. 4282, http://www.inria.fr/RRRT/RR-4282.html

[11] Castro M., Macias J. and Pares C. (2001): A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 35, pp. 107-127.

[12] Einfeldt B., Munz C.D., Roe P.L. and Slogreen B. (1991): On Godunov type methods for near low densities. Journal of Computational Physics, Vol. 92, pp. 273-295.

[13] Ferrari S. and Saleri F. (2004): A new two-dimensional Shallow Water model including pressure effects and slow varying bottom topography. ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 38, No. 2, pp. 211-234.

[14] George D. (2004): Numerical Approximation of the Nonlinear Shallow Water Equations with Topography and Dry Beds: A Godunov-Type Scheme. M.Sc. Thesis, University of Washington.

[15] Gerbeau J.-F. and Perthame B. (2001): Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation. Discrete and Continuous Dynamical Systems, Ser. B, Vol. 1, No. 1, pp. 89-102.

[16] Godlewski E. and Raviart P.-A. (1996): Numerical Approximation of Hyperbolic Systems of Conservation Laws. New York: Springer-Verlag.

[17] Godunov S.K. (1959): A difference method for numerical calculation of discontinuous equations of hydrodynamics. Matematicheski Sbornik, pp. 271-300, (in Russian).

[18] Harten A., Lax P.D. and Van Leer B. (1983): On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, Vol. 25, pp. 35-61.

[19] Hervouet J.M. (2003): Hydrodynamique des écoulements à surface libre; Modélisation numérique avec la méthode des éléments finis. Paris: Presses des Ponts et Chaussées, (in French).

[20] Khobalatte B. (1993): Résolution numérique des équations de la mécanique des fluides par des méthides cinétiques. Ph.D. Thesis, Université P. M. Curie (Paris 6), (in French).

[21] LeVeque R.J. (1992): Numerical Methods for Conservation Laws. Basel: Birkhäuser.

[22] Lions P.L., Perthame B. and Souganidis P.E. (1996): Existence of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Communications on Pure and Applied Mathematics, Vol. 49, No. 6, pp. 599-638.

[23] Perthame B. (2002): Kinetic Formulations of Conservation Laws. Oxford: Oxford University Press.

[24] Perthame B. and Simeoni C. (2001): A kinetic scheme for the Saint-Venant system with a source term. Calcolo, Vol. 38, No. 4, pp. 201-231.

[25] Roe P.L. (1981): Approximate Riemann solvers, parameter vectors and difference schemes. Journal of Computational Physics, Vol. 43, pp. 357-372.

[26] de Saint-Venant A.J.C. (1971): Théorie du mouvement nonpermanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit (in French). Comptes Rendus de l'Académie des Sciences, Paris, Vol. 73, pp. 147-154.