Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_3_a0, author = {Dumbser, M. and Munz, C. D.}, title = {On source terms and boundary conditions using arbitrary high order discontinuous {Galerkin} schemes}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {297--310}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a0/} }
TY - JOUR AU - Dumbser, M. AU - Munz, C. D. TI - On source terms and boundary conditions using arbitrary high order discontinuous Galerkin schemes JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 297 EP - 310 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a0/ LA - en ID - IJAMCS_2007_17_3_a0 ER -
%0 Journal Article %A Dumbser, M. %A Munz, C. D. %T On source terms and boundary conditions using arbitrary high order discontinuous Galerkin schemes %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 297-310 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a0/ %G en %F IJAMCS_2007_17_3_a0
Dumbser, M.; Munz, C. D. On source terms and boundary conditions using arbitrary high order discontinuous Galerkin schemes. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 3, pp. 297-310. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_3_a0/
[1] Bassi F. and Rebay S. (1997): High-order accurate discontinuous finite element solution of the 2D Euler equations. Journal of Computational Physics, Vol. 138, pp. 251-285.
[2] Ben-Artzi M. and Falcovitz J. (1984): A second-order Godunov type scheme for compressible fluid dynamics. Journal of Computational Physics, Vol. 55, pp. 1-32.
[3] Botta N., Klein R., Langenberg S. and Lützenkirchen S. (2004): Well balanced finite volume methods for nearly hydrostatic flows. Journal of Computational Physics, Vol. 196, pp. 539-565.
[4] Bourgeade A., LeFloch P., and Raviart P.A. (1989): An asymptoticexpansion for the solution of the generalized Riemann problem. Part II: Application to the gas dynamics equations. Annales de l'Institut Henri Poincaré (C) Analyse non linéaire, Vol. 6, pp. 437-480.
[5] Cockburn B., Karniadakis G. E. and Shu C.W. (2000): Discontinuous Galerkin Methods. Springer.
[6] Cockburn B. and Shu C.W. (1989): TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II: General framework. Mathematics of Computation, Vol. 52, pp. 411-435.
[7] Cockburn B. and Shu C. W. (1998): The Runge-Kutta discontinuous Galerkin method for conservation laws. V: Multidimensional systems. Journal of Computational Physics, Vol. 141, pp. 199-224.
[8] Dumbser M. (2005): Arbitrary High Order Schemes for the Solution of Hyperbolic Conservation Laws in Complex Domains. Aachen: Shaker Verlag.
[9] Dumbser M. and Munz C.D. (2005): Arbitrary high order Discontinuous Galerkin schemes, In: Numerical Methods for Hyperbolic and Kinetic Problems (S. Cordier, T. Goudon, M. Gutnic and E. Sonnendrucker, Eds.). EMS Publishing House, pp. 295-333.
[10] Dumbser M. and Munz C.D. (2006): Building blocks for arbitrary high order discontinuous Galerkin schemes. Journal of Scientific Computing, Vol. 27, pp. 215-230.
[11] Greenberg J.M. and Le Roux A.Y. (1996): A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM Journal on Numerical Analysis, Vol. 33, pp. 1-16.
[12] Klein R. (1995): Semi-implicit extension of a Godunov type scheme based on low mach number asymptotics. I: One-dimensional flow. Journal of Computational Physics, Vol. 121, pp. 213-237.
[13] Le Floch P. and Raviart P.A. (1988): An asymptotic expansion for the solution of the generalized riemann problem. Part I: General theory. Annales de l'Institut Henri Poincaré (C) Analyse non linéaire, Vol. 5, pp. 179-207.
[14] LeVeque R.J. (1998): Balancing source terms and flux gradients in high resolution Godunov methods. Journal of Computational Physics, Vol. 146, pp. 346-365.
[15] Meister A. (1999): Asymptotic single and multiple scale expansions in the low Mach number limit. SIAM Journal on Applied Mathematics, Vol. 60, No. 1, pp. 256-271.
[16] Meister A. (2003): Asymptotic based preconditioning technique for low mach number flows. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), Vol. 83, pp. 3-25.
[17] Milholen W.E. (2000): An efficient inverse aerodynamic design method for subsonic flows. Technical Report No. 2000-0780, American Institute of Aeronautics and Astronoutics, Reno, NV.
[18] Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery B.P. (1996): Numerical Recipes in Fortran 77. Cambridge: Cambridge University Press.
[19] Qiu J., Dumbser M. and Shu C.W. (2005): The discontinuous Galerkin method with Lax-Wendroff type time discretizations. Computer Methods in Applied Mechanics and Engineering, Vol. 194, pp. 4528-4543.
[20] Roller S. and Munz C.D. (2000): A low mach number scheme based on multi-scale asymptotics. Computing and Visualization in Science, Vol. 3, pp. 85-91.
[21] Stroud A.H. (1971): Approximate Calculation of Multiple Integrals. Englewood Cliffs, NJ: Prentice-Hall.
[22] Titarev V.A. and Toro E.F. (2002): ADER: Arbitrary high order Godunov approach. Journal of Scientific Computing, Vol. 17, No. 1-4, pp. 609-618.
[23] Titarev V.A. and Toro E.F. (2005): ADER schemes for threedimensional nonlinear hyperbolic systems. Journal of Computational Physics, Vol. 204, pp. 715-736.
[24] Toro E.F. (1999): Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd Ed. Springer.
[25] Toro E.F., Millington R.C. and Nejad L.A.M (2001): Towards very high order Godunov schemes, In: Godunov Methods. Theory and Applications (E.F. Toro, Ed.). Kluwer/Plenum Academic Publishers, pp. 905-938.
[26] Toro E.F. and Titarev V.A. (2002): Solution of the generalized Riemann problem for advection-reaction equations. Proceedings of the Royal Society A, Vol. 458, pp. 271-281.