Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_2_a8, author = {Boukezzoula, R. and Galichet, S. and Foulloy, L.}, title = {Fuzzy feedback linearizing controller and its equivalence with the fuzzy nonlinear internal model control structure}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {233--248}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a8/} }
TY - JOUR AU - Boukezzoula, R. AU - Galichet, S. AU - Foulloy, L. TI - Fuzzy feedback linearizing controller and its equivalence with the fuzzy nonlinear internal model control structure JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 233 EP - 248 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a8/ LA - en ID - IJAMCS_2007_17_2_a8 ER -
%0 Journal Article %A Boukezzoula, R. %A Galichet, S. %A Foulloy, L. %T Fuzzy feedback linearizing controller and its equivalence with the fuzzy nonlinear internal model control structure %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 233-248 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a8/ %G en %F IJAMCS_2007_17_2_a8
Boukezzoula, R.; Galichet, S.; Foulloy, L. Fuzzy feedback linearizing controller and its equivalence with the fuzzy nonlinear internal model control structure. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 2, pp. 233-248. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a8/
[1] Babuska R. (1998): Fuzzy Modeling for Control. - Dordrecht: Kluwer Academic Publishers.
[2] Baoming G., Jingping J., Pengsheng S. and Xiangheng W. (2002): Nonlinear internal-model control for switched reluctance drives. - IEEE Trans. Power Electron., Vol. 17, No. 3, pp. 379-388.
[3] Baranyi P., Bavelaar I., Babuska R., Koczy L.T., Titli A. and Verbruggen H.B. (1998): A method to invert a linguistic fuzzy model.-Int. J. Systems Sci., Vol. 29, No. 7, pp. 711-721.
[4] Boukezzoula R., Galichet S. and Foulloy L. (2001): Fuzzy nonlinear adaptive internal model control (FNAIMC). - Europ. J. Contr., Vol. 7, No. 5, pp. 523-540.
[5] Boukezzoula R., Galichet S. and Foulloy L. (2003): Nonlinear internal model control: Application of inverse model based fuzzy control. - IEEE Trans. Fuzzy Syst., Vol. 11, No. 6, pp. 814-829.
[6] Boukezzoula R., Galichet S. and Foulloy L. (2004): Observerbased fuzzy adaptive control for a class of nonlinear systems: Real-time implementation for a robot wrist.-IEEE Trans. Contr. Syst. Technol., Vol. 12, No. 3, pp. 340-351.
[7] Boukezzoula R., Foulloy L. and Galichet S. (2006): Inverse controller design for interval fuzzy systems. - IEEE Trans. Fuzzy Syst., Vol. 14, No. 1, pp. 111-124.
[8] Cabrera J.B.D and Narendra K.S. (1999): Issues in the application of neural networks for tracking based on inverse control. - IEEE Trans. Automat. Contr., Vol. 44, No. 11, pp. 2007-2027.
[9] Chen F.C. and Khalil H.K. (1995): Adaptive control of a class of nonlinear discrete-time systems using neural networks. - IEEE Trans. Automat. Contr., Vol. 40, No. 5, pp. 791-801.
[10] Devanathan R., Rahman F. and Kuanyi Z. (2000): Neural network approach for linearizing control of nonlinear plants. - IEEE Trans. Ind. Electron., Vol. 47, No. 2, pp. 470-477.
[11] Economou C.G., Morari M. and Palsson B.O. (1986): Internal model control 5. Extention to nonlinear systems. - Ind. Eng. Chem. Proc. Des. Dev., Vol. 25, No. 5, pp. 403-409.
[12] Fang W. and Rad A. B. (2000): Fuzzy adaptive internal model control. - IEEE Trans. Ind. Electron., Vol. 47, No. 1, pp. 193-202.
[13] Foulloy L., Boukezzoula R. and Galichet S. (2006): An educational tool for fuzzy control. - IEEE Trans. Fuzzy Syst., Vol. 14, No. 2, pp. 217-221.
[14] Galichet S., Boukezzoula R. and Foulloy L. (2004): Explicit analytical formulation and exact inversion of decomposable fuzzy systems with singleton consequents. - Fuzzy Sets Syst., Vol. 146, No. 3, pp. 421-436.
[15] Hunt K.J. and Sbarbaro D. (1991): Neural Networks for Nonlinear Internal Model Control. - IEE Proc. D, Vol. 138, No. 5, pp. 431-438.
[16] Jagannathan S. (1998): Adaptive fuzzy logic control of feedback linearizable discrete-time dynamical systems under persistence excitation. - Automat., Vol. 34, No. 11, pp. 1295-1310.
[17] Jagannathan S. (1999): Discrete-time CMAC NN control of feedback linearizable nonlinear systems under persistence of excitation. - IEEE Trans. Neural Netw., Vol. 10, No. 1, pp. 128-137.
[18] Johansen T.A. and Foss B.A. (1995): Identification of nonlinear system structure and parameters using regime decomposition. - Automat., Vol. 31, No. 2, pp. 321-326.
[19] Kambhampati C., Mason J. and Warwick K. (2000): A stable one-step-ahead predictive control of non-linear systems. - Automat., Vol. 36, No. 4, pp. 485-495.
[20] Kang H.J., Kwon C., Lee H. and Park M. (1998): Robust stability analysis and design method for the fuzzy feedback linearization regulator. - IEEE Trans. Fuzzy Syst., Vol. 6, No. 4, pp. 464-472.
[21] Knospe C.R. and Lindlau J.D. (2000): Feedback linearization of an active bearing with voltage control. - IEEE Trans. Contr. Syst. Technol., Vol. 10, No. 1, pp. 21-31.
[22] Kwanghee N. (1999): Stabilization of feedback linearizable systems using a radial basis function network.-IEEE Trans. Automat. Contr., Vol. 44, No. 5, pp. 1026-1031.
[23] Leland R.P. (1998): Feedback linearization control design for systems with fuzzy uncertainty. - IEEE Trans. Fuzzy Syst., Vol. 6, No. 4, pp. 492-503.
[24] Li H-X and Deng H. (2006): An approximate internal model-based neural control for unknown nonlinear discrete processes. - IEEE Trans. Neural Netw., Vol. 17, No. 3, pp. 659-670.
[25] Liao H.E. and Chen W.S. (1997): Determination of nonlinear delay elements within NARMA models using dispersion functions. - IEEE Trans. Instrum. Meas., Vol. 46, No. 4, pp. 868-872.
[26] Lightbody G. and Irwin G.W. (26): Nonlinear control structures based on embedded neural networks. -IEEE Trans. Neural Netw., Vol. 8, No. 3, pp. 553-567.
[27] Morari M. and Zafiriou E. (1989): Robust Process Control. - Englewood Cliffs, NJ: Prentice-Hall.
[28] Mizumoto M. (1993): Fuzzy control under product-sum gravity methods and new fuzzy control methods, In: Fuzzy Control Systems (A. Kandel and G. Langholz, Eds.). - Boca Raton, FL: CRC Press, pp. 276-294.
[29] Nahas E.P., Henson M.A. and Seborg D.E. (1992): Nonlinear internal model control strategy for neural networks. -Comput. Chem. Eng., Vol. 16, No. 12, pp. 1039-1057.
[30] Nakoula Y., Galichet S. and Foulloy L. (1997): A learning method for structure and parameter identification of fuzzy linguistic models, In: Selected Approaches for Fuzzy Model Identification (H. Hellendoorn and D. Driankov, Eds.).-Berlin: Springer Verlag, pp. 282-319.
[31] Narendra K.S. and Mukhopadhyay S. (1997): Adaptive control using neural networks and approximate models. - IEEE Trans. Neural Netw., Vol. 8, No. 3, pp. 475-485.
[32] Narendra K.S. and Parthasarathy K. (1990): Identification and control of dynamical systems using neural networks. - IEEE Trans. Neural Netw., Vol. 1, No. 1, pp. 4-27.
[33] Park S. and Han T. (2000): Iterative inversion of fuzzified neural networks. - IEEE Trans. Fuzzy Syst., Vol. 8, No. 3, pp. 266-280.
[34] Rivals I. and Personnaz L. (2000): Nonlinear internal model control using neural networks: Application to processes with delay and design issues.-IEEE Trans. Neural Netw., Vol. 11, No. 1, pp. 80-90.
[35] Rovatti R. (1998): Fuzzy piecewise multilinear and piecewise linear systems as universal approximators in Sobolev norms.-IEEE Trans. Fuzzy Syst., Vol. 6, No. 2, pp. 235-249.
[36] Slotine J.J. and Li W. (1991): Applied Nonlinear Control. - Englewood Cliffs, NJ: Prentice-Hall.
[37] Sugeno M. (1999): On stability of fuzzy systems expressed by fuzzy rules with singleton consequents. - IEEE Trans. Fuzzy Syst., Vol. 7, No. 2, pp. 201-224.
[38] Wang L.X. (1993): Stable adaptive fuzzy control of nonlinear systems. - IEEE Trans. Fuzzy Syst., Vol. 1, No. 2, pp. 146-155.
[39] Wang L.X. (1994): Adaptive Fuzzy Systems and Control. Design and Stability Analysis. - Englewood Cliffs, NJ: Prentice Hall.
[40] Ying H. and Chen G. (1997): Necessary conditions for some typical fuzzy systems as universal approximators. - Automat., Vol. 33, No. 7, pp. 1333-1338.
[41] Ying H. (1999): Analytical analysis and feedback linearization tracking control of the general Takagi-Sugeno fuzzy dynamic systems. - IEEE Trans. Syst. Man Cybern., Part C: Applic. Rev., Vol. 29, No. 1, pp. 290-298.
[42] Zeng X.J. and Singh M.G. (1996a): Decomposition property of fuzzy systems and its applications. - IEEE Trans. Fuzzy Syst., Vol. 4, No. 2, pp. 149-165.
[43] Zeng X. J. and Singh M.G. (1996b): Approximation accuracy analysis of fuzzy systems as function approximators. - IEEE Trans. Fuzzy Syst., Vol. 4, No. 1, pp. 44-63.