A family of model predictive control algorithms with artificial neural networks
International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 2, pp. 217-232.

Voir la notice de l'article provenant de la source Library of Science

This paper details nonlinear Model-based Predictive Control (MPC) algorithms for MIMO processes modelled by means of neural networks of a feedforward structure. Two general MPC techniques are considered: the one with Nonlinear Optimisation (MPC-NO) and the one with Nonlinear Prediction and Linearisation (MPC-NPL). In the first case a nonlinear optimisation problem is solved in real time on-line. In order to reduce the computational burden, in the second case a neural model of the process is used on-line to determine local linearisation and a nonlinear free trajectory. Single-point and multi-point linearisation methods are discussed. The MPC-NPL structure is far more reliable and less computationally demanding in comparison with the MPC-NO one because it solves a quadratic programming problem, which can be done efficiently within a foreseeable time frame. At the same time, closed-loop performance of both algorithm classes is similar. Finally, a hybrid MPC algorithm with Nonlinear Prediction, Linearisation and Nonlinear optimisation (MPC-NPL-NO) is discussed.
Keywords: predictive control, neural networks, optimisation, linearisation, quadratic programming
Mots-clés : sterowanie predykcyjne, sieć neuronowa, optymalizacja, linearyzacja, programowanie kwadratowe
@article{IJAMCS_2007_17_2_a7,
     author = {{\L}awry\'nczuk, M.},
     title = {A family of model predictive control algorithms with artificial neural networks},
     journal = {International Journal of Applied Mathematics and Computer Science},
     pages = {217--232},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a7/}
}
TY  - JOUR
AU  - Ławryńczuk, M.
TI  - A family of model predictive control algorithms with artificial neural networks
JO  - International Journal of Applied Mathematics and Computer Science
PY  - 2007
SP  - 217
EP  - 232
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a7/
LA  - en
ID  - IJAMCS_2007_17_2_a7
ER  - 
%0 Journal Article
%A Ławryńczuk, M.
%T A family of model predictive control algorithms with artificial neural networks
%J International Journal of Applied Mathematics and Computer Science
%D 2007
%P 217-232
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a7/
%G en
%F IJAMCS_2007_17_2_a7
Ławryńczuk, M. A family of model predictive control algorithms with artificial neural networks. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 2, pp. 217-232. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a7/

[1] Kesson B. M. and Toivonen H. T. (2006): A neural network model predictive controller. - J. Process Contr., Vol. 16, No. 3, pp. 937-946.

[2] Bacic M., Cannon M. and Kouvaritakis B. (2002): Feedback linearization MPC for discrete-time bilinear systems. - Proc. 15-th IFAC World Congress, Barcelona, Spain, CDROM, paper 2391.

[3] Babuška R., Sousa J. M. and Verbruggen H. B. (1999): Predictive control of nonlinear systems based on fuzzy and neural models. - Proc. European Control Conf., Karlsruhe, Germany, CD-ROM, paper F1032-5.

[4] Bazaraa M. S., Sherali J. and Shetty K. (1993): Nonlinear Programming: Theory and Algorithms.-New York: Wiley.

[5] Bloemen H.H.J., van den Boom T. J. J. and Verbruggen H. B. (2001): Model-based predictive control for Hammerstein-Wiener systems. - Int. J. Contr., Vol. 74, No. 5, pp. 482-495.

[6] Brdyś M.A. and Tatjewski P. (2005): Iterative algorithms for multilayer optimizing control. - London: Imperial College Press/World Scientific.

[7] Cavagnari L.,Magni L. and Scattolini R. (1999): Neural network implementation of nonlinear receding-horizon control. - Neural Comput. Applic., Vol. 8, No. 1, pp. 86-92.

[8] Clarke D. W., Mohtadi C. and Tuffs P. S. (1987): Generalized predictive control - I. The basic algorithm.-Automatica, Vol. 23, No. 2, pp. 137-148.

[9] Cutler R. and Ramaker B. (1979): Dynamic matrix control - A computer control algorithm. - Proc. AIChE National Meeting, Houston.

[10] Dutka A. and Ordys A. W. (2004): The optimal non-linear generalised predictive control by the time-varying approximation. - Proc. 10-th IEEE Int. Conf. Methods and Models in Automation and Robotics, Mi˛edzyzdroje, Poland, pp. 299-303.

[11] Grimble M.J. and Ordys A.W. (2001): Nonlinear predictive control for manufacturing and robotic applications. - Proc. 7-th IEEE Int. Conf. Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 579-592.

[12] Haykin S. (1999): Neural Networks - A Comprehensive Foundation. - Englewood Cliffs, NJ: Prentice Hall.

[13] Henson M. A. (1998): Nonlinear model predictive control: Current status and future directions.-Comput. Chemi. Engi., Vol. 23, No. 2, pp. 187-202.

[14] Hornik K., Stinchcombe M. and White H. (1989): Multilayer feedforward networks are universal approximators. - Neural Netw., Vol. 2, No. 5, pp. 359-366.

[15] Hussain M. A. (1999): Review of the applications of neural networks in chemical process control - Simulation and online implementation.-Artifi. Intelli. Eng., Vol. 13, No. 1, pp. 55-68.

[16] Kavsek B.K., Skrjanc I. and Matko D. (1997): Fuzzy predictive control of a highly nonlinear pH process. - Comput. Chem. Eng., Vol. 21, Supplement, pp. S613-S618.

[17] Kouvaritakis B., Cannon M. and Rossiter J. A. (1999): Nonlinear model based predictive control. - Int. J. Contr., Vol. 72, No. 10, pp. 919-928.

[18] Liu G. P., Kadirkamanathan V. and Billings S. A. (1998): Predictive control for non-linear systems using neural networks. -Int. J. Contr., Vol. 71, No. 6, pp. 1119-1132.

[19] Ławryńczuk M. and Tatjewski P. (2006): An efficient nonlinear predictive control algorithm with neural models and its application to a high-purity distillation process. - Lecture Notes in Artificial Intelligence, Springer, Vol. 4029, pp. 76-85.

[20] Ławryńczuk M. and Tatjewski P. (2004): A stable dual-mode type nonlinear predictive control algorithm based on online linearisation and quadratic programming. - Proc. 10-th IEEE Int. Conf. Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 503-510.

[21] Ławryńczuk M. (2003): Nonlinear model predictive control algorithms with neural models.-Ph.D. thesis,Warsaw University of Technology, Warsaw, Poland.

[22] Ławryńczuk M. and Tatjewski P. (2003): An iterative nonlinear predictive control algorithm based on linearisation and neural models. - Proc. European Control Conf., Cambridge, U.K., CD-ROM, paper 339.

[23] Ławryńczuk M. and Tatjewski P. (2002): A computationally efficient nonlinear predictive control algorithm based on neural models. - Proc. 8-th IEEE Int. Conf. Methods and Models in Automation and Robotics, Szczecin, Poland, pp. 781-786.

[24] Ławryńczuk M. and Tatjewski P. (2001): A multivariable neural predictive control algorithm. - Proc. IFAC Advanced Fuzzy-Neural Control Workshop, Valencia, Spain, pp. 191-196.

[25] Maciejowski J.M. (2002): Predictive Control with Constraints. - Harlow, U.K.: Prentice Hall.

[26] Mahfouf M. and Linkens D.A. (1998): Non-linear generalized predictive control (NLGPC) applied to muscle relaxant anaesthesia. - Int. J. Contr., Vol. 71, No. 2, pp. 239-257.

[27] Maner B.R., Doyle F.J., Ogunnaike B.A. and Pearson R.K. (1996): Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models. - Automatica, Vol. 32, No. 9, pp. 1285-1301.

[28] Michalska H. and Mayne D.Q. (1993): Robust receding horizon control of constrained nonlinear systems. - IEEE Trans. Automat. Cont., Vol. 38, No. 11, pp. 1623-1633.

[29] Morari M. and Lee J. (1999): Model predictive control: Past, present and future. - Comput. Chem. Engi., Vol. 23, No. 4/5, pp. 667-682.

[30] Nørgaard M., Ravn O., Poulsen N. K. and Hansen L. K. (2000): Neural Networks for Modelling and Control of Dynamic Systems. - London: Springer.

[31] Osowski S. (1996): Neural Networks - An Algorithmic Approach. -Warsaw, Poland: WNT.

[32] Parisini T., Sanguineti M. and Zoppoli R. (1998): Nonlinear stabilization by receding-horizon neural regulators. - Int. J. Contr., Vol. 70, No. 3, pp. 341-362.

[33] Piche S., Sayyar-Rodsari B., Johnson D. and Gerules M. (2000): Nonlinear model predictive control using neural networks. - IEEE Contr. Syst. Mag., Vol. 20, No. 3, pp. 56-62.

[34] Qin S. J. and Badgwell T. (2003): A survey of industrial model predictive control technology. -Contr. Eng. Pract., Vol. 11, No. 7, pp. 733-764.

[35] Rossiter J. A. (2003): Model-Based Predictive Control. - Boca Raton, FL: CRC Press.

[36] Sriniwas G. R. and Arkun Y.(1997): A global solution to the non-linear model predictive control algorithms using polynomial ARX models. - Comput. Chem. Engi., Vol. 21, No. 4, pp. 431-439.

[37] Tatjewski P. (2007): Advanced Control of Industrial Processes, Structures and Algorithms. -London: Springer.

[38] Tatjewski P. and Ławryńczuk M. (2006): Soft computing in model-based predictive control. - Int. J. Appl. Math. Comput. Sci., Vol. 16, No. 1, pp. 101-120.

[39] Trajanoski Z. and Wach P. (1998): Neural predictive control for insulin delivery using the subcutaneous route.-IEEE Trans. Biomed. Eng., Vol. 45, No. 9, pp. 1122-1134.

[40] Wang L. X. and Wan F. (2001): Structured neural networks for constrained model predictive control. - Automatica, Vol. 37, No. 8, pp. 1235-1243.

[41] Yu D. L. and Gomm J. B. (2003): Implementation of neural network predictive control to a multivariable chemical reactor. -Contr. Eng. Pract., Vol. 11, No. 11, pp. 1315-1323.

[42] Zheng A. (1997): A computationally efficient nonlinear MPC algorithm.-Proc.American Control Conf., Albuquerque, pp. 1623-1627.