Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_2_a6, author = {{\L}angowski, R. and Brdy\'s, M. A.}, title = {Monitoring of chlorine concentration in drinking water distribution systems using an interval estimator}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {199--216}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a6/} }
TY - JOUR AU - Łangowski, R. AU - Brdyś, M. A. TI - Monitoring of chlorine concentration in drinking water distribution systems using an interval estimator JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 199 EP - 216 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a6/ LA - en ID - IJAMCS_2007_17_2_a6 ER -
%0 Journal Article %A Łangowski, R. %A Brdyś, M. A. %T Monitoring of chlorine concentration in drinking water distribution systems using an interval estimator %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 199-216 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a6/ %G en %F IJAMCS_2007_17_2_a6
Łangowski, R.; Brdyś, M. A. Monitoring of chlorine concentration in drinking water distribution systems using an interval estimator. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 2, pp. 199-216. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a6/
[1] Al-Omari A.S. and Chaudhry M.H. (2001): Unsteady-state inverse chlorine modeling in pipe networks.-J. Hydr. Eng., Vol. 127, No. 8, pp. 669-677.
[2] Alcaraz-González V., Harmand J., Rapaport A., Steyer J.P., González-Alvarez V. and Pelayo Ortiz C. (2004): Application of a robust interval observer to an anaerobic digestion process.-Proc. 10th IWAWorld Congress Anaerobic Digestion, AD10, Montreal, Canada, Vol. 1, pp. 337-342.
[3] Boccelli D.L., Tryby M.E., Uber J.G. and Summers R.S. (2003): A reactive species model for chlorine decay and THM formation under rechlorination conditions. - Water Res., Vol. 37, No. 11, pp. 2654-2666.
[4] Boulos P.F., Lansey K.E. and Karney K.E. (2004): ComprehensiveWater Distribution Systems Analysis Handbook.- Pasadena, CA: MWH Soft Inc.
[5] Brdys M.A. and Ulanicki B. (1994): Operational Control of Water Systems: Structures, Algorithms and Applications. - New York: Prentice Hall.
[6] Brdys M.A. and Kang C.Y. (1994): Algorithms for state bounding in large-scale systems. - Int. J. Adapt. Contr. Signal Process., Vol. 8, No. 1, pp. 103-118.
[7] Brdys M.A. and Chen K. (1995): Joint estimation of state and parameters in quantity models of water supply and distribution systems.- Automatisierungstechnik, Vol. 43, No. 2, pp. 77-84.
[8] Brdys M.A. and Chen K. (1996): Joint estimation of states and parameters of integrated quantity and quality models of dynamic water supply and distribution systems.-Proc. 13th IFAC World Congress, San Francisco, Vol. 1, pp. 73-78.
[9] Chen K. (1997): Set membership estimation of state and parameters and operational control of integrated quantity and quality models of water supply and distribution systems.- Ph.D. thesis, University of Birmingham, Birmingham, UK.
[10] Clark R.M., Rossman L.A. and Wymer L.J. (1995): Modeling distribution system water quality: Regulatory implications. - J. Water Res. Plann. Manag., Vol. 121, No. 6, pp. 423-428.
[11] Duzinkiewicz K., Brdys M.A. and Chang T. (2005): Hierarchical model predictive control of integrated quality and quantity in drinking water distribution systems. - Urban Water J., Vol. 2, No. 2, pp. 125-137.
[12] Duzinkiewicz K. (2006): Set membership estimation of parameters and variables in dynamic networks by recursive algorithms with a moving measurement window.-Int. J. Appl. Math. Comput. Sci., Vol. 16, No. 2, pp. 209-217.
[13] Gouzé J.L., Rapaport A. and Hadj-Sadok M.Z. (2000): Interval observers for uncertain biological systems. - Ecol. Modell., Vol. 13, No. 1, pp. 45-56.
[14] Grewal M.S. and Andrews A.P. (2001): Kalman Filtering: Theory and Practice, 2nd Ed..-New York: Wiley.
[15] Hadj-Sadok M.Z. and Gouzé J.L. (2001): Estimating of uncertain models of activated sludge process with interval observers. - J. Process Contr., Vol. 11, No. 3, pp. 299-310.
[16] Harmand J. and Rapaport A. (2002): Interval observers for interconnected biotechnological systems.-Proc. 15th IFAC World Congress, Barcelona, Spain, (on CD-ROM).
[17] Luenberger D.G. (1979): Introduction to Dynamic Systems: Theory, Models and Applications.-New York: Wiley.
[18] Łangowski R. and Brdys M.A. (2006): Interval asymptotic estimator for chlorine monitoring in drinking water distribution systems. - Proc. 1st IFAC Workshop Applications of Large Scale Industrial Systems, Helsinki, Stockholm, (on CD-ROM).
[19] Males R.M., Clark R.M., Wehrman P.J. and Gates W.E. (1985): Algorithm for mixing problems in water systems. - J. Hydr. Eng., Vol. 111, No. 2, pp. 206-219.
[20] Males R.M., Grayman W.M. and Clark R.M. (1988): Modeling water quality in distribution systems. - J. Water Res. Plann. Manag., Vol. 114, No. 2, pp. 197-209.
[21] Milanese M., Norton J., Piet-Lahanier H. and Walter É. (1996): Bounding Approaches to System Identification. - New York: Plenum Press.
[22] Mitchel A.R. and Griffiths D.F. (1980): The Finite Difference Method in Partial Differential Equations. - New York: Wiley.
[23] Park K. and Kuo A.Y. (1999): A multi-step computation scheme: decoupling kinetic processes from physical transport in water quality models. - Water Res., Vol. 30, No. 10, pp. 2255-2264.
[24] Rapaport A. and Dochain D. (2005): Interval observers for biochemical processes with uncertain kinetics and inputs. - Math. Biosci., Vol. 193, No. 2, pp. 235-253.
[25] Rossman L.A., Boulos P.F. and Altman T. (1993): Discrete volume element method for network water-quality models. - J.Water Res. Plann. Manag., Vol. 119, No. 5, pp. 505-517.
[26] Rossman L.A., Clark R.M. and Grayman W.M. (1994): Modeling chlorine residuals in drinking water distribution systems. -J. Env. Eng., Vol. 120, No. 4, pp. 803-820.
[27] Rossman L.A. and Boulos P.F. (1996): Numerical methods for modeling water quality in distribution systems: a Comparison. - J. Water Res. Plann. Manag., Vol. 122, No. 2, pp. 137-146.
[28] Smith H.L. (1995): Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems. - Providence, Rhode Island: AMS.