Voir la notice de l'article provenant de la source Library of Science
@article{IJAMCS_2007_17_2_a5, author = {Mzyk, G.}, title = {Generalized kernel regression estimate for the identification of {Hammerstein} systems}, journal = {International Journal of Applied Mathematics and Computer Science}, pages = {189--197}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a5/} }
TY - JOUR AU - Mzyk, G. TI - Generalized kernel regression estimate for the identification of Hammerstein systems JO - International Journal of Applied Mathematics and Computer Science PY - 2007 SP - 189 EP - 197 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a5/ LA - en ID - IJAMCS_2007_17_2_a5 ER -
%0 Journal Article %A Mzyk, G. %T Generalized kernel regression estimate for the identification of Hammerstein systems %J International Journal of Applied Mathematics and Computer Science %D 2007 %P 189-197 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a5/ %G en %F IJAMCS_2007_17_2_a5
Mzyk, G. Generalized kernel regression estimate for the identification of Hammerstein systems. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) no. 2, pp. 189-197. http://geodesic.mathdoc.fr/item/IJAMCS_2007_17_2_a5/
[1] Bai E.W. (2003): Frequency domain identification of Hammerstein models. - IEEE Trans. Automat. Contr., Vol. 48, No. 4, pp. 530-542.
[2] Bai E.W. and Li D. (2004): Convergence of the iterative Hammerstein system identification algorithm. - IEEE Trans. Automat. Contr., Vol. 49, No. 11, pp. 1929-1940.
[3] Billings S.A. and Fakhouri S.Y. (1982): Identification of systems containing linear dynamic and static nonlinear elements. - Automat., Vol. 18, No. 1, pp. 15-26.
[4] Chang F.H.I. and Luus R. (1971): A non-iterative method for identification using Hammerstein model. - IEEE Trans. Automat. Contr., Vol. AC-16, No. 4, pp. 464-468.
[5] Chen H.F. (2005): Strong consistency of recursive identification for Hammerstein systems with discontinuous piecewiselinear memoryless block. -IEEE Trans. Automat. Contr., Vol. 50, No. 10, pp. 1612-1617.
[6] Giannakis G.B. and Serpedin E. (2001): A bibliography on nonlinear system identification. - Signal Process., Vol. 81, No. 3, pp. 533-580.
[7] Giunta G., Jacovitti G. and Neri A. (1991): Bandpass nonlinear system identification by higher cross correlation. - IEEE Trans. Signal Process., Vol. 39, No. 9, pp. 2092-2095.
[8] Gomez J.C. and Basualdo M. (2000): Nonlinear model identification of batch distillation process. - Proc. Int. IFAC Symp. Advanced Control of Chemical Processes, ADCHEM, Pisa, Italy, pp. 953-959.
[9] Greblicki W. (1989): Nonparametric orthogonal series identification of Hammerstein systems. - Int. J. Syst. Sci., Vol. 20, No. 12, pp. 2355-2367.
[10] Greblicki W. (2001): Recursive identification of Wiener systems. -Int. J. Appl. Math. Comp. Sci., Vol. 11, No. 4, pp. 977-991.
[11] Greblicki W., Krzyżak A. and Pawlak M. (1984): Distribution free pointwise consistency of kernel regression estimate.- Ann. Stat., Vol. 12, No. 4, pp. 1570-1575.
[12] Greblicki W. and Pawlak M. (1986): Identification of discrete Hammerstein systems using kernel regression estimates.- IEEE Trans. Automat. Contr., Vol. 31, No. 1, pp. 74-77.
[13] Greblicki W. and Pawlak M. (1989): Nonparametric identification of Hammerstein systems. - IEEE Trans. Inf. Theory, Vol. 35, No. 2, pp. 409-418.
[14] Greblicki W. and Pawlak M. (1994): Cascade non-linear system identification by a non-parametric method. - Int. J. Syst. Sci., Vol. 25, No. 1, pp. 129-153.
[15] Haber M. and Keviczky L. (1999): Nonlinear System Identification - Input-Output Modeling Approach. - Dordrecht: Kluwer.
[16] Haber R. and Zeirfuss P. (1988): Identification of an electrically heated heat exchanger by several nonlinear models using different structures and parameter estimation methods. - Tech. Rep., Inst. Machine and Process Automation, Technical University of Vienna, Austria.
[17] Hannan E.J. and Deistler M. (1998): The Statistical Theory of Linear Systems. -New York: Wiley.
[18] Hasiewicz Z. and Mzyk G. (2004a): Combined parametricnonparametric identification of Hammerstein systems. - IEEE Trans. Automat. Contr., Vol. 49, No. 8, pp. 1370-1376.
[19] Hasiewicz Z. and Mzyk G. (2004b): Nonparametric instrumental variables for Hammerstein system identification. -Int. J. Contr., (submitted).
[20] Hasiewicz Z., Pawlak M. and Śliwiński P. (2005): Nonparametric identification of nonlinearities in block-oriented systems by orthogonal wavelets with compact support. - IEEE Trans. Circ. Syst. I: Fund. Theory Applic., Vol. 52, No. 2, pp. 427-442.
[21] Härdle W. (1990): Applied Nonparametric Regression. - Cambridge: Cambridge University Press.
[22] Janczak A. (1999): Parameter estimation based fault detection and isolation in Wiener and Hammerstein systems. - Int. J. Appl. Math. Comput. Sci., Vol. 9, No. 3, pp. 711-735.
[23] Jang W. and Kim G. (1994): Identification of loudspeaker nonlinearities using the NARMAX modelling technique. - J. Audio Eng. Soc., Vol. 42, No. 1/2, pp. 50-59.
[24] Krzyżak A. (1990): On estimation of a class of nonlinear systems by the kernel regression estimate.-IEEE Trans. Inf.Theory, Vol. IT-36, No. 1, pp. 141-152.
[25] Krzyżak A., Sąsiadek J. and Kégl B. (2001): Identification of dynamic nonlinear systems using the Hermite series approach. - Int. J. Syst. Sci., Vol. 32, No. 10, pp. 1261-1285.
[26] Latawiec K.J. (2004): The Power of Inverse Systems in Linear and Nonlinear Modeling and Control. - Opole: Opole University of Technology Press.
[27] Ljung L. (1987): System Identification: Theory for the User. - Englewood Cliffs, NJ: Prentice Hall.
[28] Narendra K.S. and Gallman P.G. (1966): An iterative method for the identification of nonlinear systems using the Hammerstein model. - IEEE Trans. Automat. Contr., Vol. 11, No. 3, pp. 546-550.
[29] Pawlak M. and Hasiewicz Z. (1998): Nonlinear system identification by the Haar multiresolution analysis. - IEEE Trans. Circ. Syst., Vol. 45, No. 9, pp. 945-961.
[30] Söderström T. and Stoica P. (1982): Instrumental-variable methods for identification of Hammerstein systems. - Int. J. Contr., Vol. 35, No. 3, pp. 459-476.
[31] Söderström T. and Stoica P. (1989): System Identification. - Englewood Cliffs, NJ: Prentice Hall.
[32] Van den Hof P., Heuberger P. and Bokor J. (1995): System identification with generalized orthonormal basis functions. - Automatica, Vol. 31, No. 12, pp. 1821-1834.
[33] Vörös J. (1999): Iterative algorithm for identification of Hammerstein systems with two-segment nonlinearities.-IEEE Trans. Automat. Contr., Vol. 44, No. 11, pp. 2145-2149.
[34] Wand M.P. and Jones H.C. (1995): Kernel Smoothing. - London: Chapman and Hall.
[35] Zhang Y.K. and Bai E.W. (1996): Simulation of spring discharge from a limestone aquifer in Iowa. - Hydrogeol. J., Vol. 4, No. 4, pp. 41-54.
[36] Zhu Y. (2000): Identification of Hammerstein models for control using ASYM. - Int. J. Contr., Vol. 73, No. 18, pp. 1692-1702.